Answer:
The pressure of the gas is kept constant. If the Kelvin temperature of the gas is doubled, the volume of the gas is. O 1.
Which is the best example and explanation that a physical change has occurred?
fireworks exploding, because energy is released as light and heat
gasoline burning, because it forms water vapor and carbon dioxide
O crushing an ice cube, because the chemical structure of the ice cube is changed
dicing potatoes, because the molecules are separated but remain the same substance
dicing potatoes, because the molecules are separated but remain the same substance
Answer:
For the people wondering, yes, dicing potatoes is the correct answer. Because a new substance has not formed.
Suppose there is a gaseous mixture of nitrogen and oxygen. If the total pressure of the mixture is 480 mmHg, and the partial pressure of nitrogen is 290 mmHg, calculate the partial pressure of oxygen in the mixture using Dalton's law.
Answer:
Partial pressure of oxygen = 190 mmHg
Explanation:
From the question;
Mixture contains only nitrogen and oxygen
Total pressure of the mixture = 480 mmHg
Partial pressure of nitrogen = 290 mmHg
Dalton's law states that the pressure of a system is as a result of the sum of the partial pressures of the individual components of the mixture. This means that in this mixture;
Pressure of mixture = Partial Pressure of Nitrogen + Partial Pressure of Oxygen
480 = 290 + Partial pressure of oxygen
Partial pressure of oxygen = 480 - 290
Partial pressure of oxygen = 190 mmHg
Consider the following reaction:2 HgCl2(aq) + C2O42-(aq) 2 Cl-(aq) + 2 CO2(g) + Hg2Cl2(s)(a) The rate law for this reaction is first order in HgCl2(aq) and second order in C2O42-(aq). What is the rate law for this reaction?Rate = k [HgCl2(aq)] [C2O42-(aq)]Rate = k [HgCl2(aq)]2 [C2O42-(aq)]Rate = k [HgCl2(aq)] [C2O42-(aq)]2Rate = k [HgCl2(aq)]2 [C2O42-(aq)]2Rate = k [HgCl2(aq)] [C2O42-(aq)]3Rate = k [HgCl2(aq)]4 [C2O42-(aq)](b) If the rate constant for this reaction at a certain temperature is 0.0169, what is the reaction rate when [HgCl2(aq)] = 0.158 M and [C2O42-(aq)] = 0.202 M?Rate = M/s.(c) What is the reaction rate when the concentration of HgCl2(aq) is doubled, to 0.316 M while the concentration of C2O42-(aq) is 0.202 M?Rate = M/s
Answer:
b
Explanation:
the position-time graph shows the motion of four people. label the lines on graph need on the motion description in this table.
Answer:
4,2,3,1
Explanation:
Plz what’s the answer to this
Answer: E
Explanation:hope this helps you out
4. One mole of oxygen contains 6.02 x 102 molecules. How many oxygen molecules are in
5.55 moles of oxygen gas?|
Answer:
3.34x10²⁴ molecules of oxygen
Explanation:
1 Mole of particles of any kind of gases or particles are always 6.022x10²³.
1 mole of electrons are 6.022x10²³ electrons
1 mole of any gas are 6.022x10²³ molecules
1 mole of oxygen are 6.022x10²³ molecules. Thus, 5.55 moles are:
3.34x10²⁴ molecules of oxygenA. 1
B. 2
C. 3
D. 4
_______________________________________________________
Sunday
Monday
What
The
Freak
Saturday
What volume will be occupied by 33.0 grams of CO2 at 500 torr and 27 °C?
Answer:
V = 27.98 L
Explanation:
Given data:
Mass of CO₂ = 33.0 g
Pressure = 500 torr
Temperature = 27°C
Volume occupied = ?
Solution:
Number of moles of CO₂:
Number of moles = mass/molar mass
Number of moles = 33.0 g/ 44 g/mol
Number of moles = 0.75 mol
Volume of CO₂:
PV = nRT
R = general gas constant = 0.0821 atm.L/ mol.K
Now we will convert the temperature.
27+273 = 300 K
Pressure = 500 /760 = 0.66 atm
By putting values,
0.66 atm×V = 0.75 mol × 0.0821 atm.L/ mol.K × 300 K
V = 18.47 atm.L/0.66 atm
V = 27.98 L
The volume that will be occupied by 33.0 grams of CO2 at 500 torr and 27 °C is 28.11L.
IDEAL GAS LAW:The volume of an ideal gas can be calculated using the ideal gas law equation as follows:
PV = nRT
Where;
P = pressure (atm)V = volume (L)n = number of moles (mol)R = gas law constant (0.0821 Latm/molK)T = temperature (K)According to this question;
P = 500torr = 0.657atmV = ?n = 33/44 = 0.75molT = 27°C = 27 + 273 = 300K0.657 × V = 0.75 × 0.0821 × 300
0.657V = 18.4725
V = 18.4725 ÷ 0.657
V = 28.11L
Therefore, the volume that will be occupied by 33.0 grams of CO2 at 500 torr and 27 °C is 28.11L.
Learn more about ideal gas law at: https://brainly.com/question/4147359
Write a balanced half-reaction for the oxidation of gaseous nitric oxide (NO) to aqueous nitrous acid (HNO2) in acidic aqueous solution.
Answer:
NO + H₂O → HNO₂ + 1 e- + 1 H⁺
Step-by-step explanation:
NO ⇒ oxidation number of N = +2
HNO₂ ⇒ oxidation number of N= +3
Therefore, NO has to lose 1 electron to be oxidized to HNO₂. We write the half-reaction with 1 electron (1 e-) in the products side.
NO → HNO₂ + 1 e-
Now, we have 0 electrical charges in the reactants side, and a total of -1 electrical charge in the products side. As the reaction is in acidic aqueous solution, we have to add H⁺ ions to balance the charges. We perform the balance by adding 1 H⁺ (positive charge) to neutralize the negative charge in the side of the products:
NO → HNO₂ + 1 e- + 1 H⁺
Now, we perform the mass balance. We have:
N: 1 atom in both sides
O: 1 atom in reactants side and 2 atoms in products side
H: 0 atoms in reactants side, 2 atoms in products side.
Thus, we have to add 1 H₂O molecule to the reactants side to equal the masses:
NO + H₂O → HNO₂ + 1 e- + 1 H⁺
Finally, the oxidation half-reaction is:
NO + H₂O → HNO₂ + 1 e- + 1 H⁺
Write the molecular, ionic, and net ionic equations for the reaction of Sr(NO3)2(aq) and Li2SO4(aq).
Answer:
Molecular: [tex]Sr(NO_3)_2(aq) +Li_2SO_4(aq)\rightarrow SrSO_4(s)+2LiNO_3(aq)[/tex]
Ionic: [tex]Sr^{2+}(aq)+2NO_3^-(aq) +2Li^{2+}(aq)+SO_4(aq)^{2-}\rightarrow SrSO_4(s)+2Li^+(aq)+2NO_3^-(aq)[/tex]Net ionic: [tex]Sr^{2}(aq)+SO_4(aq)^{2-}\rightarrow SrSO_4(s)[/tex]
Explanation:
Hello!
In this case, since the molecular, ionic and net ionic equations show the complete molecules, ions and resulting ions respectively, for the reaction between strontium nitrate and lithium sulfate, we can notice the formation of solid strontium sulfate and lithium nitrate as shown below:
[tex]Sr(NO_3)_2(aq) +Li_2SO_4(aq)\rightarrow SrSO_4(s)+2LiNO_3(aq)[/tex]
Which is the molecular equation showing both reactants and products as molecules. Then, the ionic equation shows all the reactants and products as ions, considering that aqueous solutions dissociate whereas solid, liquid and gaseous molecules do not, therefore, we obtain:
[tex]Sr^{2+}(aq)+2NO_3^-(aq) +2Li^{2+}(aq)+SO_4(aq)^{2-}\rightarrow SrSO_4(s)+2Li^+(aq)+2NO_3^-(aq)[/tex]
Finally, for the net ionic equation, we cancel out the spectator ions, which are those at both reactants and products:
[tex]Sr^{2+}(aq)+SO_4(aq)^{2-}\rightarrow SrSO_4(s)[/tex]
Best regards!
A further explanation is below.
Given:
[tex]Sr(NO_3)_2 (aq)[/tex] (Strontium nitrate)[tex]L1_2SO_4 (aq)[/tex] (Lithium sulfate)Strontium nitrate reacts with Lithium sulfate just to produce Strontium sulfate ([tex]Sr(NO_3)_2[/tex]) and Lithium nitrate ([tex]Li NO_3[/tex]).
The molecular equation will be:
→ [tex]Sr(NO_3)_2(aq) +Li_2SO_4(aq) \rightarrow SrSO_4 (s) +2LiNO_3 (aq)[/tex]
The complete ionic equation will be:
→ [tex]Sr^{2+} (aq) +2NO_3^- (aq) +2Li^+ (aq)+ SO_4^{2-} (aq) \rightarrow SrSO_4 (s)+2Li^+ (aq) +2NO_3^- (aq)[/tex]
By removing the uncharged ions from equation's will be:
Spectator ion:
→ [tex]2Li^+ (aq), 2NO_3^- (aq)[/tex]
Net ionic equation will be:
→ [tex]Sr^{2+}(aq)+SO_4^{2-} (aq) \rightarrow SrSO_4 (s)[/tex]
Thus the response above is right.
Learn more:
https://brainly.com/question/13843770
List any three quantum numbers that describe an electron in an atom and state the relationship between any of the two
Explanation:
To completely describe an electron in an atom, four quantum numbers are needed: energy (n), angular momentum (ℓ), magnetic moment (mℓ), and spin (ms).
Please follow me and make me Brainless
A hutch weighs 150 lbs and it’s base has a length and width of 15 in and 34 in, respectively. What is the pressure exerted by the hutch on the floor?
Answer:0.29
Explanation:
To determine the pressure of the hutch on the floor, we must first calculate the area of the base of the hutch.
A=lw=(15in.)(34in.)=510in.2
We can now use the formula to calculate pressure.
P=FAP=150lbs510in.2P≈0.294lbin.2
Rounding to two significant figures, the pressure exerted by the hutch on the floor is 0.29lbin.2.
A 45.0 mL solution of 0.0450 M hydroxylamine is extracted with 125 mL of solvent. The distribution constant for the reaction is 5.00 and the pKa of the protonated form of hydroxylamine is 5.960. Calculate the concentration of hydroxylamine remaining in the aqueous phase at pH=4.50 and pH=6.50 .
Answer:
pH = 4.5, concentration = 0.045 M.
pH = 6.5, concentration = 0.175 M.
Explanation:
The ka for the can be calculated by using the formula below;
Ka = 10^-pka = 10^-5.960 = 1.1 × 10^-6
The concentration of hydrogen ion at pH = 4.50 can be calculated as given below;
{H^+ } = 10^-4.50 = 3.2 × 10^-5 M.
(NB=> 10 in this regards means the inverse of log).
The next step is to determine the distribution coefficient which can be calculated by using the formula below;
distribution coefficient = (partition coefficient) × ka / ka + ( concentration of Hydrogen ion,H^+).
distribution coefficient =( 5 × 1.1 × 10^-6 ) / 1.1 × 10^-6 + 3.2 × 10^-5 M. = 5.5 × 10^-6/ 3.2 = 0.00000171875
The fraction remaining from the compound = 45.0 mL / 45.0 mL + (0.00000171875 × 125).
= 0.999995.
Thus, the concentration at pH = 4.5 = 0.999995 × 0.0450 M = 0.045 M
(B). pH=6.50, thus the concentration of Hydrogen ion = 10^-6.5 = 3.2 × 10^-7 M.
distribution coefficient = (partition coefficient) × ka / ka + ( concentration of Hydrogen ion,H^+).
distribution coefficient = (5 × 1.1 × 10^-6)/ 1.1 × 10^-6 + 3.2 × 10^-7 M).
distribution coefficient = 5.5 × 10^-6/ 1.42 × 10^-6 = 3.9.
Therefore, the concentration = 3.9 × 0.0450 M = 0.175 M.
write the chemical formula of tetraphosporus osctasulfide
Answer:
P4S8 .
the chemical formula of Tetraphosporus osctasulfide is p4S8
1+1 hahahahahhhahahaahahahahahahahahahahahahahaha why u dumb
Answer:
1+1=2 Unless this is a trick question. Then it's most likely 11.
Explanation:
1 + 1 = 2
thxs for the points realy tho thxs
Where do karst regions occur?
Answer:
Image result for Where do karst regions occur?
Karsts are found in widely scattered sections of the world, including the Causses of France; the Kwangsi area of China; the Yucatán Peninsula; and the Middle West, Kentucky, and Florida in the United States.
Explanation:
Answer:
Middle West Kentucky.
Explanation:
Karst are found in widely scatter sections of the world.
Fluorine gas and water vapor react to form hydrogen fluoride gas and oxygen. What volume of oxygen would be produced by this reaction if 2.6em of were consumed? Also, be sure your answer has a unit symbol, and is rounded to the correct number of significant digits
Answer:
The reaction is 2F_2 (g) + 2H_2 O (g) rightarrow 4HF (g) + O_2 (g) 2 moles of fluorine gas (F_2) reacts with 2 moles of water vapors (H_2 O) to produce 4 moles of hy
A mixture of 10.0 g of Ne and 10.0 g Ar have a total pressure of 1.60 atm. What is the partial pressure of Ar
Answer:
0.53 atm
Explanation:
First we have to obtain the number of moles of each gas.
Number of moles of Ne = 10g/20g/mol = 0.5 moles
Number of moles of Ar = 10 g/40 g/mol = 0.25 moles
Total number of moles = 0.5 moles + 0.25 moles = 0.75 moles
Partial pressure of Ar = number of moles of Ar/Total number of moles * total pressure
Partial pressure of Ar = 0.25 moles/ 0.75 moles * 1.60 atm
Partial pressure of Ar = 0.53 atm
If the concentration of a reactant is tripled (all other things remain constant), and the reaction rate increases nine times, what is the reaction order with respect to the tripled reactant? Enter your answer as a number.If the concentration of a reactant is increased 1.5 times (all other things remain constant), and the reaction rate increases 2.25 times, what is the reaction order with respect to the reactant? Enter your answer as a number.If the concentration of a reactant is tripled (all other things remain constant), and the reaction rate remains constant, what is the reaction order with respect to the tripled reactant? Enter your answer as a number.When 29.0 mL of 0.220 M KIO3 is combined with 38.0 mL of H2SO3 and 50.0 mL of water, what is the resulting concentration of KIO3?
The reaction order for the following conditions are:
a. two
b. two
What do you mean by reaction order?Reaction order is the number of reactants, whose concentration affects the reaction rate.
The reaction order can be determined by adding the exponents of each reactant.
The rate equation is [tex]v^0 = k[A]^x + k[B]^y[/tex]
The first-order reaction is in which the reaction is dependent on one variable concentration.
The second-order reaction is that in which the reaction is dependent upon the concentration of two variables.
Thus, the correct options are a. two, b.two.
Learn more about reaction order
https://brainly.com/question/1769080
Which of the following statements correctly describes the function of cell parts?
A. The cell membrane determines which type of cell will develop.
B. The nucleus contains all the nutrients that the cell needs.
C. The mitochondria are the power plants of the cell.
D. The genes contain hemoglobin.
The statements correctly describes the function of cell parts is the mitochondria are the power plants of the cell. Therefore, option C is correct.
What do you mean by the mitochondria ?The cytoplasm of a cell contains tiny structures (fluid that surrounds the cell nucleus). The majority of a cell's energy is produced by mitochondria, which also have unique genetic material distinct from that present in the nucleus.
Oxidative phosphorylation, which produces ATP using the energy generated during the oxidation of the food we ingest, is the traditional function of mitochondria.
For the majority of biochemical and physiological activities, including growth, mobility, and equilibrium, ATP is used as the main energy source in turn.
Thus, option C is correct.
To learn more about the mitochondria, follow the link;
https://brainly.com/question/10688306
#SPJ6
The chart shows the frequencies of certain colors of visible light. A 2 column table with 4 rows. The first column is labeled light with entries red, violet, green, orange. The second column is labeled frequency in hertz with entries 4.5 times 10 Superscript 14 baseline, 7.5 times 10 Superscript 14 baseline, 6.0 times 10 Superscript 14 baseline, 5.0 times 10 Superscript 14 baseline. Which colors will eject electrons when they strike sodium, which has a frequency threshold of 5.7 × 1014 Hz? violet and green red and orange violet only red, violet, green, and orange
Answer:
Violet only
Explination:
Violet is the only color that will eject electrons when it strikes sodium.
The colors that will eject electrons when there's a strike with sodium from the chart will be A. Violet and green.
ElectronsFrom the complete information, William made a chart in order to illustrate the result of the experiment that was made with the photoelectric effect.
In this case, the colors that will eject electrons when they strike sodium, with the frequency threshold will be violet and green.
This was gotten from the result that the frequencies of light were lower than the frequency threshold.
Learn more about electrons on:
https://brainly.com/question/860094
Calculate the final temperature (once the ice has melted) of a mixture made up initially of 70.0 mL liquid water at 28 oC and 5.0 g ice at 0.0 oC.
Answer:
21.52° C
Explanation:
From the given information:
mass of the liquid water = 70.0 mL
Initial temperature = 20°C
mass of the ice = 5.0 g
temperature of ice = 0.0°C
Using the calorimetric function:
heat lost by water = heat gained by ice.
mass of water × specific heat of water (s) × ΔT = mass of ice × specific heat of ice (s) × ΔT + n (ΔH_fusion}
⇒ 70 × 4.184 × (28 -x) = 5 × 2.108(x - 0) + [tex](\dfrac{5}{18})[/tex] × 6.01 × 10³
By solving the above equation,
x = 21.52° C
The final temperature of the mixture of water and ice is 21.5 ⁰C.
The given parameters;
initial volume of the liquid = 70 mL initial temperature of the water, = 28⁰Cmass of the ice, = 5.0 gtemperature of the ice, = 0⁰ Cspecific heat capacity of ice = 2.09 J/g ⁰Cheat of fusion of ice = 333.55 J/gspecific heat capacity of water = 4.184 J/g⁰ Cdensity of water = 1 g/mlLet the final temperature of the mixture = t
mass of the liquid water = 1 g/ml x 70 ml = 70 g
Apply the principle of conservation of energy to determine the final temperature of the mixture;
heat lost by water = heat gained by ice
[tex]70 \times 4.184(28 - t) = 5\times 2.09(t - 0) \ + \ 5 \times 333.55\\\\8200.64 - 292.88t = 10.45 t + 1667.75\\\\303.33t = 6532.89\\\\t = \frac{6532.89}{303.33}\\\\t = 21.5 \ ^0C[/tex]
Thus, the final temperature of the mixture of water and ice is 21.5 ⁰C.
Learn more here:https://brainly.com/question/12200172
do seeds need energy to germinate
Answer:
Seeds need oxygen so that they can produce energy for germination and growth. The embryo gets energy by breaking down its food stores. Like all organisms, this is done through a process known as aerobic respiration. —a series of reactions where energy is released from glucose, using oxygen.
When 50.0 mL of 0.400 M Ca(NO3)2 is added to 50.0 mL of 0.800 M NaF, CaF2 precipitates, as shown in the netionic equation below. The initial temperature of both solutions is 23.0°C. Assuming that the reaction goes tocompletion, and that the resulting solution has a mass of 100.00 g and a specific heat of 4.18 J/(g ∙°C), calculatethe final temperature of the solution.Ca2+(aq) + 2 F-(aq) → CaF2(s)∆H°=-11.5 kJ
Answer:
23.55°C
Explanation:
Based on the equation:
Ca²⁺(aq) + 2F⁻(aq) → CaF₂(s) ∆H°=-11.5 kJ
When 1 mole of Ca²⁺ and 2 of F⁻ reacts, 11.5kJ are released.
Thus, we need to find moles of reaction to find the heat released and using:
C = SₓmₓΔT
We can find the final temperature as follows:
Moles of reaction:
0.0500L * (0.400mol / L) = 0.0200moles Ca²⁺ = Moles of reaction
Heat produced is:
0.0200 moles * (11.5kJ / mol) = 0.23kJ
Using:
C = SₓmₓΔT
Where C is heat = 230J
S is specific heat = 4.18J/g
m is mass of solution = 100.00g
And ΔT is change in temperature
230J = 4.18J/gₓ100.00gₓΔT
ΔT = 0.55°C
As initial temperature is 23.0°C
Final temperature = 23.0°C + 0.55°C =
23.55°CThe final temperature of the solution is 23.55°C.
We were given the equation
Ca²⁺(aq) + 2F⁻(aq) → CaF₂(s) ∆H°=-11.5 kJ
This means that 1 mole of Ca²⁺ and 2 of F⁻ reacts to form CaF₂ and 1.5kJ is released.
The formula we need to use is C = SₓmₓΔT
where c is heat, s is specific heat, m is number of mole and ΔT is temperature change.
We need to find the moles of reaction first
Moles of reaction = 0.0500L × (0.400mol / L) = 0.0200moles Ca²⁺
Heat produced = 0.0200 moles ×11.5kJ / mol = 0.23kJ
We can then substitute into the formula
C = SₓmₓΔT
C = 230J
S = 4.18J/g
m = 100.00g
ΔT= ?
230J = 4.18J/gₓ100.00gₓΔT
= 0.55°C
Since the initial temperature is 23.0°C
The Final temperature will be 23.0°C + 0.55°C
=23.55°C
Read more on https://brainly.com/question/19564028
12oz of water initially at 75oF is mixed with 20oz of water intiially at 140oF. What is the final temperature?
Answer:
[tex]115.625^{\circ}\text{F}[/tex]
Explanation:
[tex]m_1[/tex] = First mass of water = 12 oz
[tex]m_2[/tex] = Second mass of water = 20 oz
[tex]\Delta T_1[/tex] = Temperature difference of the solution with respect to the first mass of water = [tex](T-75)^{\circ}\text{F}[/tex]
[tex]\Delta T_2[/tex] = Temperature difference of the solution with respect to the second mass of water = [tex](T-75)^{\circ}\text{F}[/tex]
c = Specific heat of water
As heat gain and loss in the system is equal we have
[tex]m_1c\Delta T_1=m_2c\Delta T_2\\\Rightarrow m_1\Delta T_1=m_2\Delta T_2\\\Rightarrow 12(T-75)=20(140-T)\\\Rightarrow 12T-900=2800-20T\\\Rightarrow 12T+20T=2800+900\\\Rightarrow 32T=3700\\\Rightarrow T=\dfrac{3700}{32}\\\Rightarrow T=115.625^{\circ}\text{F}[/tex]
The final temperature of the solution is [tex]115.625^{\circ}\text{F}[/tex].
What is pure convalent bond
Answer:
Pure covalent bonds exist between two atoms with the same electronegativities. A pure covalent bond has no ionic character at all. Diatomic elements are good examples of pure covalent bonds where the electrons are evenly shared between both nuclei.
Explanation:
Hope this helped!
The compound F20 has two lone pairs on the central oxygen atom. What's the structure of an F2O molecule? Is this compound polar or non-polar?
A. Trigonal planar, polar
B. Bent or angular non-polar
C. Bent or angular polar
D. Trigonal planar non-polar
Answer:
Bent or Angular, Polar
Explanation:
I just took the test!
Answer:
C. Bent or angular polar
Explanation:
The nucleus of an atom is made up of which of the following combinations of particles?
Answer: Atoms of different elements are found to have different number of protons, neutrons, and electrons. To distinguish one atom from another or to classify the various atoms, a number which indicates the number of protons in the nucleus of a given atom, is assigned to the atoms of each identified element. This number is known as the atomic number of the element. The atomic numbers for some of the elements which are associated with the study of semiconductors are given in the following table.
Explanation:
Element Symbol Atomic Number
Silicon Si 14
Germanium Ge 32
Arsenic As 33
Antimony Sb 51
Indium In 49
Gallium Ga 31
Boron B 5
Answer:
[tex]\boxed {\boxed {\sf Protons \ and \ neutrons}}[/tex]
Explanation:
The atom is made up of two main parts: the nucleus and the electron cloud.
The nucleus is the center and has two subatomic particles: the protons (positive charge) and the neutrons (no/neutral charge). The nucleus as a whole has a positive charge, since the neutrons don't provide a charge.
The electron cloud surrounds the nucleus and houses the negatively charged electrons in a "cloud" of energy levels.
So, the nucleus of the atom is made up of protons and neutrons.
How many seconds are in 100 years(factor label conversion)
Answer:
0.0166
Explanation:
This conversion of 100 seconds to minutes has been calculated by multiplying 100 seconds by 0.0166 and the result is 1.6666 minutes.
I hope this helps,
even a little bit