A grocery store sells sliced cheddar cheese by weight. The relationship between the amount of cheddar cheese in pounds, and the time in dollars of cheddar cheese in pounds, x, and the total cost in dollars of the sliced cheddra cheese, y, is represented by a graph drawn in the xy-planeIf the point (8, 44) lies on the graph, what does the point (8, 44) indicate?

Answers

Answer 1

Remember that the pair of coordinates

[tex](x,y)[/tex]

of a point that lies on the graph of the function tells us the x-value and the

y-value related to that value.

Therefore, the point

[tex](8,44)[/tex]

Represents that 8 pounds of cheddar cheese cost $44 in total (y represents the total cost, not the cost per pound)

(Correct answer is option B)


Related Questions

Devon saw 19 adults wearing hats

Answers

Answer:

please add rest of question?

Step-by-step explanation:

What is a quadrilateral that has reflection symmetry, but not rotation symmetry?

Answers

The quadrilaterals, parallelogram,square, rectangle has rotational symmetry but no reflectional symmetry

A trapezoid has neither a rotational symmetry nor a reflectional symmetry

But for an isosceles with only one pair of parallel sides has a reflectional symmetry but no rotational symmetry

Thus, the correct answer is

an isosceles with only one pair of parallel sides

Write problem as a single radical using the smallest possible root. 20

Answers

Answer::

[tex]\sqrt[30]{r^{29}}[/tex]

Explanation:

Given the expression:

[tex]\sqrt[5]{r^4}\sqrt[6]{r}[/tex]

First, rewrite the expression using the fractional index law:

[tex]\begin{gathered} \sqrt[n]{x}=x^{\frac{1}{n}} \\ \implies\sqrt[5]{r^4}=r^{\frac{4}{5}};\text{ and} \\ \sqrt[6]{r}=r^{\frac{1}{6}} \end{gathered}[/tex]

Therefore:

[tex]\sqrt[5]{r^4}\times\sqrt[6]{r}=r^{\frac{4}{5}}\times r^{\frac{1}{6}}[/tex]

Use the multiplication law of exponents:

[tex]\begin{gathered} a^x\times a^y=a^{x+y} \\ \implies r^{\frac{4}{5}}\times r^{\frac{1}{6}}=r^{\frac{4}{5}+\frac{1}{6}} \\ \frac{4}{5}+\frac{1}{6}=\frac{24+5}{30}=\frac{29}{30} \\ \operatorname{\implies}r^{\frac{4}{5}}\times r^{\frac{1}{6}}=r^{\frac{4}{5}+\frac{1}{6}}=r^{\frac{29}{30}} \end{gathered}[/tex]

The resulting expression can be rewrittem further:

[tex]\begin{gathered} r^{\frac{29}{30}}=(r^{29})^{\frac{1}{30}} \\ =\sqrt[30]{r^{29}} \end{gathered}[/tex]

The single radical is:

[tex]\sqrt[30]{r^{29}}[/tex]

Find the missing factor. x2 - 11x + 18 = (x - 2)( .) Enter the correct answer. 000 DONE Clear all DOO

Answers

we have the second degree polynomial

[tex]x^2-11x+18[/tex]

we must find two numbers a,b such that

[tex]\begin{gathered} x^2-11x+18=(x+a)(x+b)\text{ and} \\ a+b=11 \\ ab=18 \end{gathered}[/tex]

We can see that, a=-2 and b=-9 fulfill the above conditions. Therefore, we have

[tex]x^2-11x+18=(x-2)(x-9)\text{ }[/tex]

I need help figuring out how to write out this problem correctly.

Answers

Answer

[tex]\frac{\sqrt{10}}{11}[/tex]

Step-by-step explanation

Given the expression:

[tex]\sqrt{\frac{10}{121}}[/tex]

Distributing the square root over the division and evaluating the square root at the denominator:

[tex]\begin{gathered} \frac{\sqrt{10}}{\sqrt{121}} \\ \frac{\sqrt{10}}{11} \end{gathered}[/tex]

Given the function f(x)={4x+7 if x<0 6x+4 if x>0 _

Answers

Given:

[tex]f(x)=\begin{cases}4x+7ifx<0{} \\ 6x+4ifx\ge0{}\end{cases}[/tex]

Required:

To find the value of f(-8), f(0), f(4), and f(-100)+f(100).

Explanation:

f(-8) :

Clearly -8<0,

So

[tex]\begin{gathered} f(x)=4x+7 \\ f(-8)=4(-8)+7 \\ =-32+7 \\ =-25 \end{gathered}[/tex]

f(0) :

Clearly 0=0,

[tex]\begin{gathered} f(x)=6x+4 \\ =6(0)+4 \\ =4 \end{gathered}[/tex]

f(4) :

Clearly 4>0,

[tex]\begin{gathered} f(x)=6x+4 \\ f(4)=6(4)+4 \\ =24+4 \\ =28 \end{gathered}[/tex]

f(-100)+f(100) :

-100<0

[tex]\begin{gathered} f(x)=4x+7 \\ f(-100)=4(-100)+7 \\ =-400+7 \\ =-393 \end{gathered}[/tex]

100>0

[tex]\begin{gathered} f(x)=6x+4 \\ f(100)=6(100)+4 \\ =600+4 \\ =604 \end{gathered}[/tex][tex]\begin{gathered} f(-100)+f(100)=-393+604 \\ \\ =211 \end{gathered}[/tex]

Final Answer:

[tex]\begin{gathered} f(-8)=-25 \\ \\ f(0)=4 \\ \\ f(4)=28 \\ \\ f(-100)+f(100)=211 \end{gathered}[/tex]

complete the table of ordered pairs for the linear equation. 5x+8y=3

Answers

Given:

5x+8y=3

The objective is to fill the table using the given values of x otr y.

Let's take that, x=0 and substitute in the given equation.

[tex]\begin{gathered} 5x+8y=3 \\ 5(0)+8y=3 \\ 0+8y=3 \\ y=\frac{3}{8} \end{gathered}[/tex]

Hence, the the required solution will be (0,3/8).

Let's take that, y=0 and substitute in the given equation.

[tex]\begin{gathered} 5x+8y=3 \\ 5x+8(0)=3 \\ 5x+0=3 \\ x=3-5 \\ x=-2 \end{gathered}[/tex]

Hence, the the required solution will be (-2,0).

Let's take that, y=1 and substitute in the given equation.

[tex]\begin{gathered} 5x+8y=3 \\ 5x+8(1)=3 \\ 5x+8=3 \\ 5x=3-8 \\ 5x=-5 \\ x=-\frac{5}{5} \\ x=-1 \end{gathered}[/tex]

Hence, the the required solution will be (-1,1).

End Behavior Graphically

Answers

We will investigate how to determine the end behaviours of polynomial functions.

The function given to us is:

[tex]f(x)=123x^3+9x^4-786x-3x^{5^{}}-189x^2\text{ + 1260}[/tex]

Whenever we try to determine the end-behaviour of any function. We are usually looking for value of f ( x ) for the following two cases:

[tex]x\to\infty\text{ and x}\to-\infty[/tex]

The most important thing to note when dealing with end-behaviour of polynomial functions is that the behaviour is pre-dominantly governed by the highest order term of a polynomial. The rest of the terms are considered small or negligible when considering end-behaviours of polynomials.

The highest order terms in the given function can be written as:

[tex]f(x)=-3x^5[/tex]

Then the next step is to consider each case for the value of ( x ) and evaluate the value of f ( x ) respectively.

[tex]\begin{gathered} x\to\infty \\ f\text{ ( }\infty\text{ ) = -3}\cdot(\infty)^5 \\ f\text{ ( }\infty\text{ ) = -3}\cdot\infty \\ f\text{ ( }\infty\text{ ) = -}\infty \end{gathered}[/tex]

Similarly repeat the process for the second case:

[tex]\begin{gathered} x\to-\infty \\ f\text{ ( -}\infty\text{ ) = -3}\cdot(-\infty)^5 \\ f\text{ ( -}\infty\text{ ) = 3}\cdot\infty \\ f\text{ ( -}\infty\text{ ) = }\infty \end{gathered}[/tex]

Combining the result of two cases we get the following solution:

[tex]As\text{ x}\to\text{ }\infty\text{ , y}\to\text{ -}\infty\text{ and as x}\to-\infty\text{ , y}\to\text{ }\infty[/tex]

Correct option is:

[tex]\text{Option C}[/tex]

The function P(x) is mapped to I(x) by a dilation in the following graph. Line p of x passes through (negative 2, 4) & (2, negative 2). Line I of X passes through (negative 4, 4) & (4, negative 2).© 2018 StrongMind. Created using GeoGebra. Which answer gives the correct transformation of P(x) to get to I(x)?

Answers

When we're dilating a line, we can either multiply the function value by a constant

[tex]f(x)\to kf(x)[/tex]

or the argument of the function

[tex]f(x)\to f(kx)[/tex]

Since the y-intercept of both functions is the same, then the multiplied quantity was the argument of the function.

We want to know the constant associated to the transformation

[tex]I(x)\to I(kx)=P(x)[/tex]

We have the following values for both functions

[tex]\begin{gathered} I(-4)=4,\:I(4)=-2 \\ P(-2)=4,\:P(2)=-2 \end{gathered}[/tex]

For the same y-value, we have the following correlations

[tex]\begin{gathered} I(-4)=P(-2)=P(\frac{1}{2}\cdot-4) \\ I(4)=P(2)=P(\frac{1}{2}\cdot4) \\ \implies I(x)=P(\frac{1}{2}x) \end{gathered}[/tex]

and this is our answer.

[tex]I(x)=P(\frac{1}{2}x)[/tex]

Consider the line y= 3/5x-3Find the equation of the line that is parallel to this line and passes through the point (3, 4).Find the equation of the line that is perpendicular to this line and passes through the point (3, 4).

Answers

a) y = 3/5x + 11/5

b) y = -5/3x + 9

Explanation:[tex]\begin{gathered} a)\text{ }y\text{ = }\frac{3}{5}x\text{ - 3} \\ \text{compare with equation of line:} \\ y\text{ = mx + b} \\ m\text{ =slope, b = y-intercept} \\ m\text{ =slope = 3/5} \\ b\text{ = -3} \end{gathered}[/tex]

For a line to be parallel to another line. the slope of the 1st line will be equalt to the slope of the 2nd line:

slope of 1st line = 3/5

So, the slope of the 2nd line = 3/5

Given point: (3, 4) = (x, y)

To get the y-intercept of the second line, we would insert the slope and the point into the equation of line

[tex]\begin{gathered} y\text{ = mx + b} \\ 4\text{ = }\frac{3}{5}(3)\text{ + b} \\ 4\text{ = 9/5 + b} \\ 4\text{ - }\frac{\text{9}}{5}\text{ = b} \\ \frac{20-9}{5}\text{ = b} \\ b\text{ = 11/5} \end{gathered}[/tex]

The equation of line parallel to y = 3/5x - 3:

[tex]\begin{gathered} y\text{ = mx + b} \\ y\text{ = }\frac{3}{5}x\text{ + }\frac{11}{5} \end{gathered}[/tex][tex]b)\text{ line perpendicular to y = 3/5x - 3}[/tex]

For a line to be perpendicular to another line, the slope of one will be the negative reciprocal of the second line

Slope of the 1st line = 3/5

reciprocal of 3/5 = 5/3

negative reciprocal = -5/3

slope of the 2nd line (perpendicular) = -5/3

We need to get the y-intercept of the perpendicular line:

[tex]\begin{gathered} \text{given point: (3,4) = (x, y)} \\ y\text{ = mx + b} \\ m\text{ of the perpendicular = -5/3} \\ 4\text{ = }\frac{-5}{3}(3)\text{ + b} \\ 4\text{ = -5 + b} \\ 4\text{ + 5 = b} \\ b\text{ = 9} \end{gathered}[/tex]

The equation of line perpendicular to y = 3/5x - 3:

[tex]\begin{gathered} y\text{ = mx + b} \\ y\text{ = }\frac{-5}{3}x\text{ + 9} \end{gathered}[/tex]

Rewrite each equation in slope intercept form . Then determine whether the lines are perpendicular . Explain your answer .. y - 6 = - 5/2 (x + 4) 5y = 2x + 6

Answers

y - 6 = - 5/2 (x + 4)

To write in slope-intercept form means to write in the form;

y= mx + b

where m is the slope and b is the intercept

y - 6 = - 5/2 (x + 4)

open the parenthesis

y - 6 = -5/2 x - 10

add 6 to both-side of the equation

y = - 5/2 x - 10 + 6

y = -5/2 x - 4

[tex]y=-\frac{5}{2}x\text{ - 4}[/tex]

Next is to check whether 5y = 2x + 6 is perpendicular to the above

To do that, we have to make the equation to be in the form y=mx+ b

5y = 2x + 6

Divid through by 5

y = 2/5 x + 6/5

[tex]y\text{ = }\frac{2}{5}x\text{ + }\frac{6}{5}[/tex]

The slope of perpendicular equation, when multiply gives minus one (-1)

The slope of the first equation = -5/2

The slope of the second equation is 2/5

Multiplying the two slopes;

(-5/2) (2/5) = -1

Hence the lines are perpendicular

Use one or more transformations to transform the pre-image (purple) onto the image (white). helppp

Answers

The transformation required to transform the preimage in purple to the image in white is

Rotation 180 degreesTranslation to the right 14 unitsTranslation down 4 units

What is transformation?

Transformation is the term used to  describe when a body is repositioned  or makes some movement.

Some of the movements involved in transformation are:

Rotation Translation and so onHow to transform the pre- image to the image

The movement can start in several ways however we stick to this as described

The first movement is rotation by 180 degrees about the topmost edge at the left side.The next step is translation 14 units to the right. This gets the preimage exactly on top of the imageFinally, translation 4 units down

Learn more about translation at: https://brainly.com/question/29042273

#SPJ1

I didn't really get it when my teacher tried to explain this

Answers

The formula for determining the volume of a cylinder is expressed as

V = pi * r^2h

Where

V represents volume of cylinder

pi is a constant whose value is 3.142

r represents radius of cylinder

h represents height of cylinder

From the information given,

h = 10

r = 3

V = 3.142 * 3^2 * 10

V = 282.78 in^3

The closest measurement is option A

What is 4x+10(2x) - 8x

Answers

4x+10(2x) - 8x​

First, multiply to solve the parentheses:

4x+20x-8x

Add and subtract

16x

59.25 ÷ 0.75 = 1.06 × 7.3 =on chart. will send image

Answers

For the division, notice that we can multiply both numbers by 100, to get the following:

[tex]\begin{gathered} 59.25\cdot100=5925 \\ 0.75\cdot100=75 \end{gathered}[/tex]

then, we can make the long division:

therefore, the result of 59.25 ÷ 0.75 is 79

For the multiplication, we can write the following:

notice that since both factors have 2 digits and 1 digit each after the decimal point, the final result will have 3 digits after the decimal point,

Therefore, the result of 1.06 × 7.3 is 7.738

write 0.751 as a percentage

Answers

To convert decimal numbers to percentage, what we need to do is to multiply the decimal number by 100, and we will get the representation as a percentage.

In this case we have the decimal number:

[tex]0.751[/tex]

We multiply that number by 100 to write is as a percentage:

[tex]0.751\times100=71.5[/tex]

Answer: 75.1%

State whether the given set of lines are parallel, perpendicular or neither.3x-2y=56y-9x=6The lines are Answer

Answers

Two lines are parallel if:

[tex]m1=m2[/tex]

Two lines are perpendicular if:

[tex]m1\cdot m2=-1[/tex]

---------------------

Let's rewrite the given equations in the slope-intercept form:

[tex]\begin{gathered} 3x-2y=5 \\ y=\frac{3}{2}x-\frac{5}{2} \\ -------- \\ 6y-9x=6 \\ y=\frac{3}{2}x+1 \end{gathered}[/tex]

Since:

[tex]\begin{gathered} m1=m2 \\ \frac{3}{2}=\frac{3}{2} \\ \end{gathered}[/tex]

We can conclude that the lines are parallel.

The endpoints are a side of a rectangle ABCD in the coordinate plane at A(3,4), B(6,1) Find the equation of the line the given segment The line segment is line Segment AB

Answers

The endpoints are a side of a rectangle ABCD in the coordinate plane at A(3,4), B(6,1) Find the equation of the line the given segment

The line segment is line Segment AB​

step 1

Find the slope of segment AB

m=(1-4)/(6-3)

m=-3/3

m=-1

step 2

Find the equation of the line in slope intercept form

y=mx+b

we have

m=-1

point (3,4)

substitute

4=(-1)*(3)+b

4=-3+b

b=4+3

b=7

therefore

the equation of segment AB is

y=-x+7

The con 3720bertar What can be interpreted from the youtercept of the functionRachel must pay $37 per month to use the gymRachel must pay $20 per month to use the gymRachel must pay a $37 membership fee to join the gymRachel must pay a $20 membership fee to join the samMaria wants to rent a car. She learns that the total daily costcated using the formula C = 5x + 30. hereseS driven that day. What does the constanteseer

Answers

f(x) = 37x + 20

Answer:

Option D, $20 is the membership beause it is a fixed cost, it does not depend on the amount of months

i inserted a picture of the question can you please list the answers as well

Answers

Solution

We want to find the equation of the line given in the graph

We can see the four points on the graph where the line pass through

The points are

[tex](4,4),(2,3),(0,2),(-4,0)[/tex]

We first obtain the slope (m)

The formula for finding the slope is given as

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Using the points (0,2) and (-4,0) (indeed we can pick any two points, we will still obtain the same answer)

Here

[tex]\begin{gathered} x_1=0 \\ y_1=2 \\ x_2=-4 \\ y_2=0 \end{gathered}[/tex]

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{0-2}{-4-0} \\ m=\frac{2}{4} \\ m=\frac{1}{2} \\ m=0.5 \end{gathered}[/tex]

We can use any of the points above to find the equation

Equation of a line is given by

[tex]y-y_1=m(x-x_1)[/tex]

Using (4,4)

[tex]y-4=0.5(x-4)[/tex]

Option D is correct

Using (2,3)

Conner plans to plow a field in one day. Before lunch he plows 15 acres, which is 30% of the field. Howmany acres will he have to plow after lunch in order to finish the field?

Answers

Solution:

Let the total field to plow be 100 %

According to the question,

The field plowed before lunch is shown below:

15 acres field = 30%

30 % field = 15 acres

1 % field = 15/30 acres

The field plow after lunch is 70%.

[tex]\begin{gathered} 70\text{ \% of field = }\frac{15}{30}\times70 \\ =35\text{ acres} \end{gathered}[/tex]

Final Answer:

Therefore, the field to plow after lunch in order to finish the field is 35 acres.

Over a set of 5 chess games, Yolanda's rating increased 10 points, increased 4 points,
decreased 21 points, increased 23 points and decreased 8 points.
Her rating is now 1647.
What was her rating before the 5 games?
A. 1639
B. 1649
C. 1655
D. 1661

Answers

Answer:

C. 1655

Step-by-step explanation:

+10, +4, -21, +23, -8

Adding all those terms together we get 8

1647 + 8 = 1655

What are the coefficient(s) in the following expression:
x² + 2x-5xy-y+3y¹
2,4
A
B
C
D
1, 2, 5, 1,3
2,-5, 3
1, 2, 5, 1, 3

Answers

Step-by-step explanation:

based on the expression you wrote here, the correct answer is

1, 2, -5, -1, 3

since none of your answer options show this, you must have made a mistake either with the expression itself or with the answer options.

please choose in your original the one matching my answer above.

A local band was interested in the average song time for rock bands in the 1990s. They sampled eight different rock bands and found that the average time was 3.19 minutes with a standard deviation of 0.77 minutes.
Calculate the 95% confidence interval (in minutes) for the population mean.

Answers

The 95% confidence interval (in minutes) for the population mean is of:

(2.55, 3.83).

What is a t-distribution confidence interval?

The bounds of the confidence interval are given according to the following rule:

[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]

In which the parameters are described as follows:

[tex]\overline{x}[/tex] is the sample mean.t is the critical value.n is the sample size.s is the standard deviation for the sample.

The distribution is used when the standard deviation of the population is not known, only for the sample.

In the context of this problem, the values of the parameters are given as follows:

[tex]\overline{x} = 3.19, s = 0.77, n = 8[/tex]

The critical value, using a t-distribution calculator, for a two-tailed 95% confidence interval, with 8 - 1 = 63 df, is t = 2.3646.

Then the lower bound of the confidence interval is calculated as follows:

[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 3.19 - 2.3646\frac{0.77}{\sqrt{8}} = 2.55[/tex]

The upper bound is calculated as follows:

[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 3.19 + 2.3646\frac{0.77}{\sqrt{8}} = 3.83[/tex]

More can be learned about the t-distribution at https://brainly.com/question/16162795

#SPJ1

You are scuba diving at 120 feet below sea level. You begin to ascend at a rate of 4 feet per second.a. Where will you be 10 seconds after you begin your ascension? b. How long will it take to reach the surface?

Answers

The ascension can be modeled using the function:

[tex]d(t)=d_0-r\cdot t[/tex]

Where d is the number of feet below the sea level at time t (in seconds), d₀ is the initial "depth", and r is the ascension rate.

From the problem, we identify:

[tex]\begin{gathered} r=4\text{ feet per second} \\ d_0=120\text{ feet} \end{gathered}[/tex]

Then:

[tex]d(t)=120-4t[/tex]

a)

After 10 seconds, we have t = 10:

[tex]\begin{gathered} d(10)=120-4\cdot10=120-40 \\ \\ \Rightarrow d(10)=80\text{ feet} \end{gathered}[/tex]

After 10 seconds, we will be 80 feet below sea level.

b)

To find how long will it take to reach the surface, we need to solve the equation d(t) = 0.

[tex]\begin{gathered} d(t)=0 \\ 120-4t=0 \\ 4t=120 \\ \\ \therefore t=30\text{ seconds} \end{gathered}[/tex]

We will reach the surface after 30 seconds.

need help with part a with a summary and all work shown to help me understand better

Answers

ANSWER:

[tex]\left(16u^{\frac{1}{3}}\right)^{\frac{3}{4}}=8\sqrt[4]{u}[/tex]

STEP-BY-STEP EXPLANATION:

We have the following expression:

[tex]\left(16u^{\frac{1}{3}}\right)^{\frac{3}{4}}[/tex]

When you raise an exponent to another exponent, multiply therefore:

Find the equation of the line described. Write your answer in standard form. Vertical and containing (10,14)

Answers

We have here a special case where the line is vertical. In this case, the line has an "infinite" slope (or it is not defined). Therefore, since the line is vertical and contains the point (10, 14), the line is given by the equation:

[tex]x=10[/tex]

The standard form of the line is given by the general equation:

[tex]Ax+By=C[/tex]

Then, we can rewrite the equation as follows:

[tex]x+0y=10[/tex]

We can see that this line contains the point (10,14):

We can see that the vertical line, x + 0y = 10 passes through the point (10, 14).

In summary, the line is given by x + 0y = 10 (A = 1, B = 0, C = 10).

1 4 a) Is the above sequence arithmetic? Justify your answer. b) Write the explicit formula for the above sequence. c) Find the 18th term.

Answers

THe length of each cube is inreasing by 1. This means that the increment is in arithmetic sequence.

The formula for determining the nth term of an aritmetic sequence is expressed as

Tn = a + (n - 1)d

Where

a represents the first tem of the sequence

Common difference, d represents the difference between consecutive terms

Given that a = 3, d = 1

Tn = 2 + (n - 1)1

Tn = 2 + n - 1

Tn = 1 + n

For the 18th term, n = 18

T18 = 1 + 18 = 19

The number of boxes in the square for the 19th term is

19 * 19 = 361

Complete the proof that the point (-2, V5 ) does or does not lle on the circle centered at the origin and containing the point (0,3). Part 1 out of 4 The radius of the circle is

Answers

We will have the following:

*First: We have that the equation of the circle will be given by:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Here (h, k) is the coordinate of the center of the circle and r is the radius of the circle.

*Second: We will replace the center of the circle and determine the radius:

[tex]x^2+y^2=r^2[/tex]

*Third: We determine the radius of the circle by using the point given:

[tex](0)^2+(3)^2=r^2\Rightarrow r^2=9\Rightarrow r=3[/tex]

*Fourth: We have the following expression representing the circle:

[tex]x^2+y^2=9[/tex]

So, we replace the point (-2, sqrt(5)) to determine whether or not it belongs to the circle, that is:

[tex](-2)^2+(\sqrt[]{5})^2=9\Rightarrow4+5=9\Rightarrow9=9[/tex]

Thus proving that the point (-2, sqrt(5)) does lie in the circle.

H is the circumcenter of triangle BCD, BC=18, and HD=14. Find CH.

Answers

Given that H is the circumcenter of the triangle.

It means, the length between each vertex point of the triangle and the point H is the radius of the circle.

Thus, the line DH=CH=BH are the radius of the circle.

It is given that DH=14.

Therefore CH=14.

Hence the value of CH is 14.

Other Questions
What is the radius of a hemispherewith a volume of 281,250 cm?? how does the eukaryotic ribosomal small subunit recognize the start codon on the mrna?group of answer choicesit undergoes a conformational charge that recruits other proteins when it hydrogens bonds to the correct tri-nucleotide sequence.it binds an met-trna to the first aug codon after the kozak sequence.it wraps the mrna strand to bring initiation enhancer proteins into the vicinity of the start codon.it binds an met-trna to the first aug codon it encounters.it performs an atp hydrolysis within the small subunit once it encounters a met-trna already bound to the aug. From the given proportional relationship, which of the following points lie on the same line? In a class of 10 boys and 12 girls, a committee of 4 members is to be formed. What is the probability to form a committee consisting of 2 boys and 2 girls?0.30400.40600.50600.2060 A small radio transmitter broadcasts in a 60 mile radius. If you drive along a straight line from a city 75 miles north of the transmitter to a second city 76 miles east of the transmitter, during how much of the drive will you pick up a signal from the transmitter? Ryan Pick 6 1/2 cups of berries from his garden he use 3 3/8 cups of to make fruit salad if he needs 3 cups of berries to make a pie does Ryan have enough very stuff to also make a pie? help meeeeeeeeee pleaseee !!!!! Use slope to determine if lines AB and CD are parallel, perpendicular, or neither 6. A(-3, 8), B(3, 2), C(7,1), D(5,-1)m(AB) m(CD) Types of Lines Determine whether the equation represents an exponential growth function, anexponential decay function, and give the percent growth or decay.17. y = 18(1.3)^t Ill give Brainly to whoever gets it right!!!Let placid slumbers sooth each weary mind,At morn to wake more heav'nly, more refin'd;So shall the labours of the day beginMore pure, more guarded from the snares of sin.Question: In the lines above, how does Wheatley view the purpose ofrest?Wheatley begins to connect the beauty of the evening with the beauty of humansouls.Wheatley highlights the importance of beauty of the natural world to the soulWheatley prays for peaceful slumber so that she will be more ready to take onthe next day's challenges.Wheatley calls upon the goddess Aurora of the dawn to refine her. As cashier, you need to record all over times you worked in hours. If you worked 330 mnts of over time how many hours will you record ? The graph of polynomial f is shown. Select all the true statements about the polynomial.aThe degree of the polynomial is even.bThe degree of the polynomial is odd.cThe leading coefficient is positive.dThe leading coefficient is negative.eThe constant term of the polynomial is positive.fThe constant term of the polynomial is negative. Determine (Freshman) Small Cafeteria). Interpret this answer in the context of the situation. Lexi and Raymond are hosting events that are catered by the same company. Lexi plans to have 63 adults and 59 children attend, so the total projected cost of her meals is $2,582. Raymond has 63 adults and 93 children on her guest list, so he will pay the caterer $3,126. How much does the caterer charge for each meal?Every adult's meal costs $, and every child's meal costs $. review the rental and purchase property information to answer the question: calculate the difference in total move-in cost between the two properties. $31,497.35 $35,842.95$39,285.45$4,976.55 Tony is a hiring director at a large tech company in Chicago, and he gets hundreds of resumes each week. How long does Tony MOST likely spend looking over each resume?30 seconds50 seconds3 minutes30 minutes factors affecting child growth and development some websites and organizations organize card drives, sending thousands of cards to u.s. troops overseas. besides the support these cards express, what else do they provide through the power of language? Which angles are adjacent to solve the equation by completing the square. Show all solutions8x^2 + 16x = 42