A body of radius R and mass m is rolling smoothly with speed v on a horizontal surface. It then rolls up a hill to a maximum height h. If h = 3v2 /4g. What might the body be ? A. a solid circular cylinder
B. a hollow circular cylinder
C. a solid circular sphere
D. a hollow circular sphere.

Answers

Answer 1

The body might be a solid circular sphere (C).

When a body rolls smoothly without slipping, the condition is satisfied when the body's shape has a uniform mass distribution. In this case, a solid circular sphere would meet that condition.

For a solid circular sphere, the radius (R) and mass (m) are related to each other in a specific way, resulting in a uniform mass distribution. This allows the sphere to roll smoothly without any internal friction or uneven weight distribution.

Given that the body rolls up a hill to a maximum height (h) defined as h = (3v^2)/(4g), the equation suggests a relationship between the velocity (v) squared, acceleration due to gravity (g), and the height reached (h). This relationship is consistent with the motion of a solid circular sphere rolling up a hill.

Therefore, based on the given information and the conditions for smooth rolling, the body is most likely a solid circular sphere.

learn more about "sphere":- https://brainly.com/question/10171109

#SPJ11


Related Questions

FILL THE BLANK. To ensure proper inspection, deliveries should be scheduled during ______. Slow times. Thermometer should be ______. Metal-stem.

Answers

To ensure proper inspection, deliveries should be scheduled during slow times. Thermometers should be metal-stem.

Scheduling deliveries during slow times allows for adequate time and attention to be given to the inspection process, reducing the likelihood of errors or oversights. Using metal-stem thermometers ensures accuracy and reliability in temperature measurement, as metal-stem thermometers are known for their durability and resistance to damage or contamination.

Using metal-stem thermometers is important because they are more accurate than other types of thermometers, such as digital or glass thermometers. Metal-stem thermometers are able to quickly and accurately respond to changes in temperature, which is critical when monitoring perishable goods like food. They are also more durable and easier to clean than other types of thermometers, which helps prevent contamination. Overall, using metal-stem thermometers can help ensure that food is cooked and stored at safe temperatures, which is essential for preventing food-borne illness.

Learn more about metal-stem. from

https://brainly.com/question/31145742

#SPJ11

Today, an object must reach an escape velocity of ve = 620 km/s to leave from the Sun's surface.
When the Sun becomes a red giant, what will the escape velocity be when it has a radius 50 times larger and a mass of only 90% what it has today? 2. What will the escape velocity be when the Sun becomes an AGB star with a radius 200 times greater and a mass only 70% of today? 3. How will these changes in escape velocity affect mass loss from the surface of the Sun as it evolves off the main sequence and becomes a red giant and later an AGB star?

Answers

To calculate the escape velocity, we can use the formula:

ve = √(2GM/r)

ve_red_giant = √(2 * G * 0.9M / (50R))

ve_AGB = √(2 * G * 0.7M / (200R))

where ve is the escape velocity, G is the gravitational constant, M is the mass of the object (in this case, the Sun), and r is the radius of the object.

When the Sun becomes a red giant with a radius 50 times larger and a mass of 90% of its current mass:

The escape velocity (ve_red_giant) can be calculated as follows:

ve_red_giant = √(2 * G * 0.9M / (50R))

where R is the current radius of the Sun.

When the Sun becomes an AGB star with a radius 200 times larger and a mass of 70% of its current mass:

The escape velocity (ve_AGB) can be calculated as follows:

ve_AGB = √(2 * G * 0.7M / (200R))

where R is the current radius of the Sun.

Changes in the escape velocity affect mass loss from the surface of the Sun as it evolves off the main sequence and becomes a red giant and later an AGB star. A higher escape velocity means that it will be more difficult for gas and particles to escape the gravitational pull of the Sun. Therefore, as the escape velocity increases, the mass loss from the surface of the Sun will be reduced, resulting in a slower rate of mass loss. Conversely, if the escape velocity decreases, the mass loss from the surface will be more pronounced, resulting in a higher rate of mass loss.

Learn more about velocity here

https://brainly.com/question/80295

#SPJ11

why does kiktchenaid electric oven beep sometime after its been in use and how do you get beating to stop

Answers

The beeping sound you hear from your KitchenAid electric oven after it's been in use is most likely an indication that the cooking cycle has ended or that the oven has reached the desired temperature.

Some models also beep to alert you when the timer has completed its countdown. To stop the beeping, you can usually press the "off" or "cancel" button on the oven control panel. To stop the beeping sound, you typically have a few options:

Check for Notifications: Look for any messages or icons on the oven's control panel that might indicate the reason for the beep. This can help you identify whether it's a timer completion, preheating, or cooking cycle alert.

Cancel the Timer: If the oven is beeping due to a timer completion, you can usually press a "Timer Off" or "Cancel" button on the control panel to stop the beeping.

Open the Oven Door: If the beeping is due to a cooking cycle completion, simply opening the oven door can often deactivate the alert.

Power Cycling: If none of the above methods work or you're unsure of the cause, you can try turning off the oven at the power source (e.g., unplugging it or switching off the circuit breaker) for a brief period and then turning it back on. This can sometimes reset the oven and stop the beeping.

To know more about power source , visit:

https://brainly.com/question/28582522

#SPJ11

which of the following list adt implementations gives us an o(1) time for removeatend, i,e removing an element from the end of the list? i. a singly-linked list with only a head pointer. ii. a singly-linked list with head and tail pointers. iii. a doubly-linked list with only a head pointer. iv. a doubly-linked list with head and tail pointers. (a) i and iii (b) i, iii and iv (c) none of the other options is correct (d) ii and iv (e) i, ii, iii and iv

Answers

Both a singly-linked list with head and tail pointers and a doubly-linked list with head and tail pointers can perform removeAtEnd operations in O(1) time complexity.
Option d is correct.


Removing an element from the end of a list typically requires us to traverse the entire list until we find the last node, and then remove that node from the list. This means that the time it takes to remove an element from the end of a list is directly proportional to the length of the list - in other words, it's an O(n) operation, where n is the length of the list.

However, there are certain data structures that can make removing an element from the end of a list faster. One example is a doubly-linked list with a tail pointer. In this data structure, each node has a reference to the previous node as well as the next node, and there is a special pointer to the last node in the list (the tail). When we want to remove the last element, we can simply update the tail pointer to point to the second-to-last element, and then remove the last element from the list. Since we don't need to traverse the entire list to find the last element, this operation takes constant time - O(1).

A singly-linked list with a tail pointer would also give us O(1) time for removeatend. However, a singly-linked list with only a head pointer (option i) or a doubly-linked list with only a head pointer (option iii) both require us to traverse the entire list to find the last element, so they would not give us O(1) time for removeatend.

Therefore, the correct answer is (d) ii and iv, as both of these options include a tail pointer that allows for O(1) removal of the last element. Option (e) i, ii, iii and iv is incorrect because option i and iii do not have tail pointers, which means they cannot support O(1) removal of the last element.


To know more about element visit:-

https://brainly.com/question/31950312

#SPJ11

An L-C circuit has an inductance of 0.350 HH and a capacitance of 0.290 nF . During the current oscillations, the maximum current in the inductor is 2.00 A .
What is the maximum energy EmaxEmaxE_max stored in the capacitor at any time during the current oscillations?
Express your answer in joules.

Answers

The maximum energy stored in the capacitor can be calculated using the formula:

Emax = 0.5 * C * V^2

Vmax = I * sqrt(L / C)

Vmax = 2.00 A * sqrt(0.350 H / 0.290 nF)

Where:

Emax is the maximum energy stored in the capacitor,

C is the capacitance of the circuit, and

V is the maximum voltage across the capacitor.

To find V, we can use the formula for the maximum voltage in an L-C circuit:

Vmax = I * sqrt(L / C)

Where:

Vmax is the maximum voltage across the capacitor,

I is the maximum current in the inductor,

L is the inductance of the circuit, and

C is the capacitance of the circuit.

Plugging in the given values:

Vmax = 2.00 A * sqrt(0.350 H / 0.290 nF)

Converting the capacitance to farads:

Vmax = 2.00 A * sqrt(0.350 H / 2.90 * 10^-10 F)

Calculating Vmax:

Vmax ≈ 390.52 V

Now we can calculate the maximum energy stored in the capacitor:

Emax = 0.5 * (0.290 * 10^-9 F) * (390.52 V)^2

Calculating Emax:

Emax ≈ 0.5 * 0.290 * 10^-9 F * (390.52 V)^2

Emax ≈ 2.69 * 10^-5 J

Therefore, the maximum energy stored in the capacitor during the current oscillations is approximately 2.69 * 10^-5 joules.

Learn more about capacitor here

https://brainly.com/question/21851402

#SPJ11

ten narrow slits are equally spaced 2.00 mm apart and illuminated with red light of wavelength 650 nm. (a) what are the angular positions (in degrees) of the third and fifth principal maxima? (consider the central maximum to be the zeroth principal maximum.)

Answers

The third principal maximum is at an angle of 12.3 degrees and the fifth principal maximum is at an angle of 24.6 degrees.


When light passes through narrow slits, it diffracts and produces a pattern of bright and dark fringes on a screen. The bright fringes are called principal maxima and are spaced at regular intervals. The angular position of the nth principal maximum can be calculated using the equation θ = nλ/d, where λ is the wavelength of the light, d is the distance between the slits, and n is the order of the maximum.

For this problem, the third principal maximum is the one where n=3, and the fifth principal maximum is the one where n=5. Plugging in the values given, we get θ3 = 12.3 degrees and θ5 = 24.6 degrees. It's important to note that the central maximum is considered the zeroth principal maximum and is located at an angle of 0 degrees.

Learn more about fringes here:

https://brainly.com/question/28608637

#SPJ11

A 1210-kg car travels 1. 20 km up an incline at constant velocity. The incline is 15° measured with respect to the horizontal. The change in the car's potential energy is

Answers

The change in the car's potential energy is approximately 3,615,124 joules.

The change in the car's potential energy can be calculated using the formula:

ΔPE = m * g * h

where:

ΔPE = change in potential energy

m = mass of the car (1210 kg)

g = acceleration due to gravity (approximately 9.8 m/s²)

h = change in height

In this case, the change in height can be determined by calculating the vertical displacement of the car as it travels up the incline.

The vertical displacement (h) can be calculated as:

h = d * sin(θ)

where:

d = distance traveled along the incline (1.20 km = 1200 m)

θ = angle of the incline (15°)

Substituting the values:

h = 1200 m * sin(15°)

h ≈ 308.41 m

Now, we can calculate the change in potential energy:

ΔPE = (1210 kg) * (9.8 m/s²) * (308.41 m)

ΔPE ≈ 3,615,124 J (joules)

Learn more about potential energy here:

https://brainly.com/question/30322013

#SPJ11

Calculate the tensile strength T, with the following information: R = 1 inch, and L = 1 inch. The peak compressive force is 2084 N.

Answers

To calculate the tensile strength (T), we need to use the formula:

T = Force/Area

In this case, we are given the peak compressive force as 2084 N. However, we need to convert this to tensile force since we want to calculate the tensile strength. Tensile force is equal in magnitude but opposite in direction to compressive force.

Therefore, T = 2084 N

Next, we need to calculate the cross-sectional area (A) of the material. Given that the diameter of the material is 1 inch, we can calculate the radius (R) as half of the diameter:

R = 1 inch / 2 = 0.5 inch

We need to convert the radius to meters since the SI unit of force is Newton (N) and the SI unit of area is square meters (m^2). Since 1 inch is equal to 0.0254 meters, we can convert the radius as follows:

R = 0.5 inch * 0.0254 meters/inch = 0.0127 meters

Now, we can calculate the cross-sectional area (A) of the material using the formula for the area of a circle:

A = π * R^2

A = 3.1416 * (0.0127 meters)^2

A ≈ 0.0005087 square meters

Finally, we can calculate the tensile strength (T) using the formula:

T = 2084 N / 0.0005087 square meters

T ≈ 4,093,981.8 N/m^2

Therefore, the tensile strength (T) is approximately 4,093,981.8 N/m^2.

Learn more about force from

https://brainly.com/question/12785175

#SPJ11

By how much does a filter angled at 45 degrees to polarized light reduce its intensity?

Answers

The polarized light passes through a filter that is angled at 45 degrees relative to the polarization direction of the light, the intensity of the light is reduced by a factor of 50%.

Polarized light consists of electromagnetic waves that oscillate in a specific plane. When light passes through a polarizing filter, it transmits only the component of light that oscillates in the same direction as the filter's polarization axis, while blocking or absorbing light oscillating perpendicular to the polarization axis.

In the case of a filter angled at 45 degrees to the polarization direction of the light, the filter allows half of the polarized light to pass through. This is because the polarized light can be decomposed into two perpendicular components: one parallel to the polarization axis of the filter and the other perpendicular to it. The filter allows the component parallel to its polarization axis to pass through, while blocking the component perpendicular to it.

Since the light is polarized and the filter allows only one of the two components to pass, the intensity of the transmitted light is reduced by half (50%). The other half of the light is absorbed or blocked by the filter.

Therefore, when polarized light encounters a filter angled at 45 degrees relative to its polarization direction, the intensity of the light is reduced by 50% due to the selective transmission of only one component of the polarized light.

Know more about polarized light here:

https://brainly.com/question/3092611

#SPJ8

A visitor says, "I've heard of Einstein's
equation E = mc2, but what does it really
mean?"

Answers

Einstein's equation, E = mc^2, is one of the most famous equations in physics. It relates energy (E) to mass (m) and the speed of light (c). Here's a breakdown of what it means:

Energy (E): Energy and mass are interchangeable according to this equation. It implies that even objects at rest possess energy by virtue of their mass. The equation shows that mass can be converted into energy and vice versa.

Mass (m): The equation indicates that mass is a form of concentrated energy. The more mass an object has, the more energy it contains.

Speed of light (c): The speed of light, denoted by 'c,' is a fundamental constant in the universe. It is approximately 3 x 10^8 meters per second. The equation tells us that the speed of light squared is a huge number, which means even a small amount of mass can correspond to a large amount of energy.

In simple terms Einstein's equation, E = mc^2 states that mass and energy are interchangeable and that a small amount of mass can correspond to a significant amount of energy. This concept is crucial in understanding nuclear reactions, such as those in the Sun or in nuclear power plants, where tiny amounts of mass are converted into vast amounts of energy. The equation also underpins the theory of relativity and has profound implications for our understanding of the universe.

Learn more about Einstein's equation from

https://brainly.com/question/30404143

#SPJ11

what is the speed vf of an electron at the fermi energy of gold? for now, neglect the effects of relativity. express your answer in meters per second to two significant figures. vf = nothing m/s

Answers

The speed (vₙ) of an electron at the Fermi energy of gold, neglecting relativistic effects, is approximately 1.57 x 10⁶ m/s.

Determine the speed v_f of an electron?

The Fermi energy represents the highest energy level occupied by electrons at absolute zero temperature. To calculate the speed of an electron at the Fermi energy, we can make use of the Fermi velocity (vₙ), which represents the average speed of electrons near the Fermi level.

For gold, the Fermi velocity is approximately 1.57 x 10⁶ m/s. This value is obtained through experimental observations and theoretical calculations. It is important to note that this value neglects relativistic effects, which can become significant at high speeds approaching the speed of light.

However, since the question explicitly states to neglect relativistic effects, we can use this approximation for the speed of the electron at the Fermi energy in gold as 1.57 x 10⁶ m/s.

To know more about velocity, refer here:

https://brainly.com/question/30559316#

#SPJ4

Which of the following terms may be used to describe the quantity of radiation emitted from the CT x-ray tube toward the patient?
a. effective MAS.
b. photon flux.
c. constant MAS.
d. photon fluence.

Answers

The term that may be used to describe the quantity of radiation emitted from the CT x-ray tube toward the patient is photon fluence. Photon fluence refers to the number of photons per unit area that are emitted from the CT x-ray tube and interact with the patient.

It is a measure of the intensity of the radiation that the patient is exposed to during a CT scan. Effective MAS, constant MAS, and photon flux are terms that are related to the amount of radiation that is delivered to the patient during a CT scan. Effective MAS refers to the product of the tube current (measured in milliamperes or mA) and the exposure time (measured in seconds or s) and is used to control the amount of radiation that is delivered to the patient.

Constant MAS is a technique used to maintain a consistent radiation dose to the patient regardless of the patient's size or shape. Photon flux refers to the rate at which photons are emitted from the CT x-ray tube. In summary, while effective MAS, constant MAS, and photon flux are related to the amount of radiation that is delivered to the patient during a CT scan, photon fluence is the term that describes the intensity of the radiation that the patient is exposed to during the scan.

To know more about CT x-ray visit :

https://brainly.com/question/29632055

#SPJ11

light from a laser strikes a diffraction grating that has 5 318 grooves per centimeter. the central and first-order principal maxima are separated by 0.488 m on a wall 1.74 m from the grating. determine the wavelength of the laser light. (in this problem, assume that the light is incident normally on the gratings.)

Answers

The wavelength of the laser light is approximately 634 nm. To determine the wavelength of the laser light, we can use the diffraction grating formula:
d * sin(θ) = m * λ

where d is the grating spacing, θ is the angle of diffraction, m is the order of the principal maxima, and λ is the wavelength of the light.
First, we need to calculate the grating spacing (d):
d = 1 / (5,318 grooves/cm) = 1 / 53,180 grooves/m

Next, we can find the angle of diffraction (θ) by using the separation between the central and first-order principal maxima (0.488 m) and the distance from the grating to the wall (1.74 m):
tan(θ) = (0.488 m) / (1.74 m)
θ = arctan(0.488 / 1.74)
Now we can plug these values into the diffraction grating formula and solve for the wavelength (λ):
(1 / 53,180) * sin(arctan(0.488 / 1.74)) = 1 * λ
Solving for λ, we get:
λ ≈ 6.34 × 10^-7 m

To know more about wavelength visit:-

https://brainly.com/question/31143857

#SPJ11

as oil is pumped through a hydraulic system it progressively

Answers

As oil is pumped through a hydraulic system, it progressively builds pressure and flows through the system, providing power to hydraulic components such as cylinders, motors, and valves.

The oil's flow rate, viscosity, and temperature can all impact the system's performance and efficiency. It's crucial to maintain the oil's cleanliness and monitor its level to ensure the hydraulic system's proper function.

As oil is pumped through a hydraulic system, it progressively flows from the hydraulic pump, which generates the required pressure, to various components such as valves, actuators, and cylinders.

These components help control and transmit the energy created by the pressurized oil, allowing the hydraulic system to perform work efficiently. Here's a step-by-step explanation of the process:

1. The hydraulic pump draws oil from the reservoir, increasing its pressure and generating the necessary power.

2. The pressurized oil flows through the hydraulic lines, which are designed to withstand the high pressure.

3. The oil reaches control valves, which regulate the flow and direction of the oil within the system.

4. The oil then moves to the actuators (such as hydraulic cylinders or hydraulic motors), where the pressurized oil's energy is converted into mechanical force, allowing the system to perform work.

5. Once the work is done, the oil's pressure decreases, and it returns to the reservoir, where it may be filtered and re-circulated through the hydraulic system.

As oil progresses through a hydraulic system, it's essential to maintain its proper viscosity, cleanliness, and temperature to ensure efficient performance and prevent component wear or damage.

To know more about hydraulic system visit -

brainly.com/question/12008408

#SPJ11

if sound travels faster underwater does that mean a jet with same engine will travel faster in water. True or False

Answers

False. While sound may travel faster underwater, it does not mean that a jet with the same engine will travel faster in water. Jets are designed to travel through air and are not built to function underwater. Water has a much higher density than air, which means it would create more drag on the jet, making it difficult to move forward at high speeds. Additionally, the properties of water make it challenging to generate lift, which is a critical component for aircraft to stay in the air. While some specialized aircraft can take off and land on water, they are designed specifically for that purpose and are not comparable to regular jets.
False. While it is true that sound travels faster underwater, this fact does not imply that a jet with the same engine will travel faster in water. The reason is that the principles governing the movement of sound waves and the movement of a jet are different.

Sound travels faster underwater due to the higher density of water compared to air
, which allows the sound waves to propagate more efficiently. However, the higher density of water also creates more resistance for objects moving through it, like a jet. This resistance, known as drag, would actually slow the jet down when compared to its speed in air.

Moreover, a jet's engine is specifically designed to operate in the air, using the principle of thrust, where air is taken in through the front of the engine and expelled at high speed out of the back. This process would not work efficiently in water, as the jet engine is not designed for underwater propulsion.

In conclusion, a jet with the same engine will not travel faster in water, despite the fact that sound travels faster underwater.

To know more about Sound travels visit

https://brainly.com/question/30416108

SPJ11

A cantilevered circular steel alloy shaft of length 18 m and diameter 120 mm is loaded at the free end by a torque, T, as shown. There are two tabs rigidly attached to the shaft at points A and B. These tabs move through slots (not shown) that allow free motion of the tabs through 1.5 degrees at point A and 4.5 degrees at point B. In other words, when the tab at A has moved through an angle of 1.5 degrees, that tab reaches the end of its slot and can no longer move. When the tab at B has moved through an angle of 4.5 degrees, it reaches the end of its slot and can no longer move. The sheer modulus of the steel alloy is 80GPa. (a) What is the applied torque, T, required for the tab at A to just reach the end of its slot? Draw the internal torque along the length of the shaft (i.e., a torque diagram) for this situation. (b) What is the applied torque, T, required for the tab at B to just reach the end of its slot? Draw the internal torque along the length of the shaft (i.e., a torque diagram) for this situation. (c) When the tab at B just reaches the end of its slot, what is the state of stress at point C? Draw this stress state on a cube with the coordinate system clearly labeled. (d) Now, a torque of twice the magnitude found in part (b) is applied. This causes the tab at B to break off the shaft, such that rotation of the shaft at point B is no longer constrained. The tab at A does not break off. Draw the internal torque along the length of the shaft (i.e., a torque diagram) for this situation. What is the angle of twist over the length of the shaft? (e) What is the state of stress at point C for the situation described in part (d)? (f) Find the principal stresses at point C and draw the orientation of these principal stresses for the situation described in part (d).

Answers

We can determine the applied torque required for the tabs to reach the end of their slots, analyze the stress state at point C, calculate the angle of twist, and determine the principal stresses at point C. The specific values and stress states will depend on the geometry,

(a) The applied torque, T, required for the tab at A to just reach the end of its slot is [insert value] Nm.

(b) The applied torque, T, required for the tab at B to just reach the end of its slot is [insert value] Nm.

(c) When the tab at B just reaches the end of its slot, the state of stress at point C is [describe stress state].

(d) The angle of twist over the length of the shaft, when a torque of twice the magnitude found in part (b) is applied, is [insert value] degrees.

(e) The state of stress at point C for the situation described in part (d) is [describe stress state].

(f) The principal stresses at point C for the situation described in part (d) are [list principal stresses] and their orientation is [describe orientation].

(a) To determine the applied torque at A, we need to consider the maximum shear stress that can be tolerated by the material. Given the length and diameter of the shaft, we can calculate the polar moment of inertia (J) using the formula:

J = (π/32) * (d^4)

where d is the diameter of the shaft.

Then, we can use the relationship between torque (T), shear stress (τ), and polar moment of inertia (J) to calculate the required torque:

T = (τ * J) / (r)

where r is the radius of the shaft. By substituting the given values, we can determine the required torque at A.

(b) Similar to part (a), we can calculate the required torque at B by using the maximum shear stress and the polar moment of inertia at that point.

(c) To determine the state of stress at point C, we need to consider the constraints on rotation at points A and B. As the tab at B reaches the end of its slot, it introduces a constraint that affects the stress state at point C. The specific stress state will depend on the geometry of the slots and the shaft, and the boundary conditions at points A and B.

(d) When a torque of twice the magnitude found in part (b) is applied, the tab at B breaks off the shaft. This means that rotation at point B is no longer constrained, while the tab at A remains intact. The torque diagram will show the change in internal torque along the length of the shaft.

To determine the angle of twist over the length of the shaft, we can use the torsion formula:

θ = (T * L) / (G * J)

where θ is the angle of twist, T is the torque, L is the length of the shaft, G is the shear modulus of the material, and J is the polar moment of inertia. By substituting the given values, we can calculate the angle of twist.

(e) The state of stress at point C for the situation described in part (d) will be influenced by the absence of the tab at B and the changes in boundary conditions. The specific stress state will depend on the remaining constraints and the resulting load distribution.

(f) To find the principal stresses at point C, we need to analyze the stress state considering the changes in boundary conditions. The principal stresses represent the maximum and minimum normal stresses at a given point. The orientation of these principal stresses can be determined by analyzing the stress tensor and finding the corresponding principal directions.

Learn more about torque visit:

https://brainly.com/question/17512177

#SPJ11

what is the origin of the atoms of hydrogen, oxygen, iron, and sodium (salt) in the perspiration that exits your body during an astronomy exam?

Answers

The atoms of hydrogen, oxygen, iron, and sodium (salt) in the perspiration that exits your body during an astronomy exam come from various sources.

Hydrogen and oxygen come from the water and other fluids you drink, while iron is derived from the food you eat. Sodium is also obtained from the food you consume, as well as from the salt you may add to your food. These elements are essential for the proper functioning of the human body, and they are constantly being used and replenished. As you sweat, some of these elements are excreted through your pores along with other waste products. Ultimately, the origin of these atoms can be traced back to various natural sources such as water, air, and minerals found in the earth's crust.

To know more about minerals, visit:

https://brainly.com/question/29970865

#SPJ11

At the centre of a 50 m diameter circular ice rink, a 75 kg skater travelling north at 2.5 m/s collides with and holds onto a 60-kg skater who had been heading west at 3.5 m/s. How long will it take them to reach the edge of the rink, and how many degrees North of West will they be?

Answers

We can use trigonometry to find the angle: tan(theta) = 2.5 m/s / 3.5 m/s, so theta = 36.9 degrees North of West.

To solve this problem, we need to use conservation of momentum and the Pythagorean theorem. Initially, the northbound skater has a momentum of 75 kg x 2.5 m/s = 187.5 kg*m/s, and the westbound skater has a momentum of 60 kg x 3.5 m/s = 210 kg*m/s.

After the collision, they move in a diagonal direction towards the edge of the rink, so we can use the Pythagorean theorem to find their combined velocity: V = sqrt((2.5 m/s)^2 + (3.5 m/s)^2) = 4.33 m/s.

The total momentum is conserved, so (75 kg + 60 kg) x 4.33 m/s = 718.5 kg*m/s. To reach the edge of the rink, they need to travel half the circumference, which is (50 m/2) x pi = 78.54 m.

Therefore, it will take them t = 78.54 m / 4.33 m/s = 18.14 seconds to reach the edge.

Finally, we can use trigonometry to find the angle: tan(theta) = 2.5 m/s / 3.5 m/s, so theta = 36.9 degrees North of West.


To learn more about momentum visit;

https://brainly.com/question/30677308

#SPJ11

how does loudness relate to the unit decibel? how does loudness relate to the unit decibel? the decibel is a unit of measurement of sound frequency. perceived loudness is determined by sound frequency and sound wavelength. the decibel is a unit of measurement of sound intensity. perceived loudness is determined completely by sound intensity. the decibel is a unit of measurement of sound intensity. perceived loudness depends on sound intensity and sound frequency. the decibel is a unit of measurement of sound frequency. perceived loudness depends on sound intensity and sound frequency.

Answers

The unit of measurement for loudness is the decibel (dB). Loudness is directly related to the intensity of sound, which is measured in decibels.

The higher the decibel level, the louder the sound. However, loudness is not solely determined by sound intensity. It also depends on the frequency and wavelength of the sound. Therefore, a sound with a higher decibel level may not necessarily be perceived as louder if its frequency is outside the range of human hearing. In summary, loudness is related to the unit decibel, which measures sound intensity, but also depends on the frequency and wavelength of the sound.

To know more about wavelength, visit:

https://brainly.com/question/14942481

#SPJ11

would you use the same pre-set wavelength of light to do spectroscopy experiments with different colored solutions? explain in 2-3 complete sentences why or why not?

Answers

No, the same pre-set wavelength of light should not be used for spectroscopy experiments with different colored solutions. The reason is that different colored solutions absorb and transmit light at different wavelengths.

Determine the pre-set wavelength of light?

Each substance has its unique absorption spectrum, and the wavelengths of light that are absorbed or transmitted depend on the chemical composition of the solution.

To properly analyze the absorption or transmission characteristics of a particular colored solution, it is essential to use a light source with a wavelength that corresponds to the region of interest in the absorption spectrum of that solution.

By using the appropriate wavelength of light, we can accurately measure the absorption or transmission properties of the solution and obtain meaningful spectroscopic data.

Therefore, (No) using a fixed wavelength of light is inappropriate for spectroscopy experiments with different colored solutions because they have distinct absorption and transmission behaviors at specific wavelengths.

To know more about wavelength of light, refer here:

https://brainly.com/question/20462619#

#SPJ4

if 200 ml of an ideal gas exerts a pressure of 760 mmhg, what volume will the same gas occupy at 1450 mmhg, assuming constant temperature?

Answers

The gas will occupy approximately 104.83 mL at a pressure of 1450 mmHg, assuming constant temperature.To solve this problem, we can use Boyle's Law.

It states that the pressure and volume of a gas are inversely proportional at constant temperature.

Boyle's Law formula: P1 * V1 = P2 * V2

Given:

Initial volume (V1) = 200 mL

Initial pressure (P1) = 760 mmHg

Final pressure (P2) = 1450 mmHg

We need to find the final volume (V2).

Rearranging the formula, we have:

V2 = (P1 * V1) / P2

Substituting the given values into the equation:

V2 = (760 mmHg * 200 mL) / 1450 mmHg

Now, let's calculate the final volume (V2):

V2 = (760 mmHg * 200 mL) / 1450 mmHg

V2 ≈ 104.83 mL

Therefore, the gas will occupy approximately 104.83 mL at a pressure of 1450 mmHg, assuming constant temperature.

learn more about Boyle's Law here

https://brainly.com/question/21184611

#SPJ11

when a pitcher throws a curve ball, the ball is given a fairly rapid spin. if a 0.15-kg baseball with a radius of 3.7 cm is thrown with a linear speed of 48 m>s and an angular speed of 42 rad>s, how much of its kinetic energy is translational and how much is rotational? assume the ball is a uniform, solid sphere.

Answers

The amοunt οf kinetic energy that is translatiοnal is apprοximately 172.8 J, and the amοunt that is rοtatiοnal is apprοximately 8.733 J.

How tο determine the amοunt οf kinetic energy?

Tο determine the amοunt οf kinetic energy that is translatiοnal and rοtatiοnal, we need tο calculate the respective cοntributiοns.

The translatiοnal kinetic energy ([tex]\rm K_{trans[/tex]) οf a rοlling sphere is given by the equatiοn:

[tex]\rm K_{trans[/tex] = (1/2) * m * v²

where m is the mass οf the ball and v is the linear speed.

Given:

Mass οf the baseball (m) = 0.15 kg

Linear speed (v) = 48 m/s

Substituting the values intο the equatiοn, we can calculate the translatiοnal kinetic energy:

[tex]\rm K_{trans[/tex]  = (1/2) * 0.15 kg * (48 m/s)²

= 0.15 kg * 1152 m²/s²

= 172.8 J

The rοtatiοnal kinetic energy ([tex]\rm K_{rot[/tex]) οf a rοlling sphere is given by the equatiοn:

[tex]\rm K_{rot[/tex] = (1/2) * I * ω²

where I is the mοment οf inertia οf the sphere and ω is the angular speed.

Fοr a sοlid sphere, the mοment οf inertia is given by:

I = (2/5) * m * r²

where r is the radius οf the ball.

Given:

Radius (r) = 3.7 cm = 0.037 m

Angular speed (ω) = 42 rad/s

Substituting the values intο the equatiοn, we can calculate the rοtatiοnal kinetic energy:

I = (2/5) * 0.15 kg * (0.037 m)²

= 0.00277 kg * m²

K_rοt = (1/2) * 0.00277 kg * m² * (42 rad/s)²

= 0.00277 kg * m² * 1764 rad²/s²

= 8.733 J

Therefοre, the amοunt οf kinetic energy that is translatiοnal is apprοximately 172.8 J, and the amοunt that is rοtatiοnal is apprοximately 8.733 J.

Learn more about kinetic energy

https://brainly.com/question/999862

#SPJ4

if a nearsighted person has a far point df that is 3.50 m from the eye, what is the focal length f1 of the contact lenses that the person would need to see an object at infinity clearly? express your answer in meters.

Answers

the nearsighted person would need contact lenses with a focal length of 3.50 meters to see an object at infinity clearly

To find the focal length f1 of the contact lenses needed by a nearsighted person with a far point of 3.50 m, we can use the formula:
1/f1 = 1/df - 1/di
where df is the far point (distance of clearest vision) and di is the distance between the lens and the eye.
Since the person wants to see an object at infinity clearly, we can assume that di is negligible compared to infinity. Therefore, we can simplify the equation to:
1/f1 = 1/df
Substituting the given value of df as 3.50 m, we get:
1/f1 = 1/3.50
Solving for f1, we get:
f1 = 3.50 m

to know more about, nearsighted visit
https://brainly.com/question/31791834
.#SPJ11

11. a comparison of the age of the earth obtained from radioactive dating an the age of the universe based on galactic doppler shifts suggests that

Answers

It indicates that the earth is a relatively young planet in comparison to the age of the universe.

Radioactive dating, also known as radiometric dating, is a method used to determine the age of rocks, minerals, fossils, or other geological materials based on the decay of radioactive isotopes. It relies on the principle that certain elements in nature are unstable and undergo radioactive decay over time, transforming into different isotopes or elements.

The process involves measuring the abundance of certain isotopes, known as parent isotopes, and their stable decay products, known as daughter isotopes, within a sample. The rate at which a particular radioactive isotope decays is characterized by its half-life, which is the time it takes for half of the parent isotopes to decay into daughter isotopes.

A comparison of the age of the earth obtained from radioactive dating and the age of the universe based on galactic Doppler shifts suggests that the age of the universe is much older than the age of the earth. Radioactive dating suggests that the earth is approximately 4.54 billion years old, while galactic Doppler shifts suggest that the universe is approximately 13.8 billion years old.

To know more about Doppler shifts, visit:

brainly.com/question/31833262

#SPJ11

A hydrogen atom is in state N = 3, where N = 1 is the lowest energy state. What is K+U in electron volts for this atomic hydrogen energy state?
E3 =? eV
The hydrogen atom makes a transition to state N = 2. What is K+U in electron volts for this lower atomic hydrogen energy state?
E2 = ?eV
What is the energy in electron volts of the photon emitted in the transition from level N = 3 to N = 2?
Ephoton = ?eV

Answers

The energy of the photon emitted in the transition from level N = 3 to N = 2 is approximately 1.89 eV.

To calculate the kinetic energy (K) and potential energy (U) in electron volts (eV) for the energy states of a hydrogen atom, we need to use the formula for the energy levels of hydrogen:

[tex]E = \frac {-13.6 eV}{n^{2}}[/tex]

where E is the energy of the state and n is the principal quantum number.

The energy of state N = 3

Using the formula, we substitute n = 3 into the equation:

[tex]E_3 = \frac {-13.6 eV}{3^{2}}= - \frac {13.6 eV}{9} \approx -1.51 eV[/tex]

The energy of state N = 3 is approximately -1.51 eV.

Energy of state N = 2

Similarly, substituting n = 2 into the formula:

[tex]E_2 = \frac {-13.6 eV}{2^{2}}= \frac {-13.6 eV}{4}= -3.4 eV[/tex]

The energy of state N = 2 is -3.4 eV.

[tex]E_{photon} = E_3 - E_2= (-1.51 eV) - (-3.4 eV)= 1.89 eV[/tex]

Learn more about the calculation of the emitted energy of the photon here:

https://brainly.com/question/32468154

#SPJ4

A turtle exclusion device a. are found at the end of long-line fishing vessels b. keep turtles breathing until they are rescued c. is too expensive to employ on a large scale d. is an example of a way to minimize bycatch

Answers

A turtle exclusion device (TED) is a device used in the fishing industry to minimize the bycatch of sea turtles.

They are typically found at the end of long-line fishing vessels and work by allowing turtles to escape once they are caught in the fishing net. This device keeps the turtles breathing until they are rescued and released back into the ocean. Although the cost of implementing a TED may be high, the environmental benefits and protection of endangered species make it a worthwhile investment.

While it may not be feasible to employ a TED on a large scale, the use of this technology in the fishing industry is a step in the right direction towards sustainable and responsible fishing practices. Overall, the use of a turtle exclusion device is an effective way to minimize bycatch and protect the delicate balance of our ocean ecosystems.

To know more about sea turtles visit:-

https://brainly.com/question/31824184

#SPJ11

A mass is tied to a spring and begins vibrating periodically. The distance between its highest and its lowest position is 38cm. What is the amplitude of the vibrations?

Answers

The amplitude of vibrations is equal to half the distance between the highest and lowest positions.

Given that the distance between the highest and lowest positions is 38 cm, the amplitude can be calculated as:

Amplitude = (Distance between highest and lowest positions) / 2

Amplitude = 38 cm / 2

Amplitude = 19 cm

Therefore, the amplitude of the vibrations is 19 cm.

different systems of measurement are used for different purposes. scientists typically use the metric system to communicate results to other scientists. which of the following describes a situation when a scientist might use a different system of measurement to communicate data?

Answers

A scientist might use a different system of measurement to communicate data in situations where the intended audience or context requires the use of a specific measurement system, or when dealing with historical data recorded in a different system.

While scientists typically use the metric system (SI units) to communicate results with other scientists due to its universal adoption and ease of conversion, there are circumstances where a different system of measurement may be employed:

Regional Conventions: In certain regions or countries, alternative measurement systems are commonly used and may be more familiar to the local audience. For example, scientists in the United States might use the customary system (imperial units) when communicating with colleagues or stakeholders who are accustomed to that system.

Industry Standards: Specific industries or disciplines may have established measurement standards unique to their field. For instance, engineers working in construction or manufacturing might utilize specialized units relevant to their industry, such as feet, pounds, or gallons.

Historical Data: When analyzing historical data, scientists may need to work with measurements recorded in a different system prevalent during that time. Converting the data to the modern metric system can lead to discrepancies or loss of accuracy, so it may be preferable to present the data in its original units.

While the metric system is widely used in scientific communication, there are situations where a scientist might opt for a different measurement system. Factors such as regional conventions, industry standards, or the need to work with historical data can influence the choice of measurement units to effectively communicate with specific audiences or maintain the integrity of the data. Flexibility in utilizing different systems of measurement allows scientists to adapt to various contexts and ensure accurate and meaningful data exchange.

To know more about scientist ,visit:

https://brainly.com/question/458058

#SPJ11

A mass connected to a light string oscillates in simple harmonic motion. The work done by air friction affects (Select all that apply)
A
the mechanical energy of the mass.
B
the kinetic energy of the mass.
C
the potential energy of the mass.
D
the thermal energy of the entire system.

Answers

Explanation:

The work done by air friction affects:

B. The kinetic energy of the mass.

D. The thermal energy of the entire system.

Air friction dissipates energy from the system in the form of heat, which increases the thermal energy of the entire system. As a result, the kinetic energy of the mass, which is part of the mechanical energy, is also affected. The potential energy of the mass, however, remains unaffected by air friction as long as the oscillations are small and the potential energy is solely due to the mass's vertical position in a gravitational field.

a car moves along the curved track. what is the apparent weight of the driver when the car reaches the lowest point of the curve?

Answers

The apparent weight of the driver at the lowest point of the curve is greater than their true weight due to the centripetal force acting on them.

When a car moves along a curved track, the driver experiences a force called centripetal force, which acts towards the center of the curve. At the lowest point of the curve, the centripetal force and gravitational force both act in the same direction (downwards).

As a result, the apparent weight of the driver, which is the combination of these two forces, becomes greater than their true weight. To calculate the apparent weight, you can use the formula: Apparent Weight = True Weight + (Mass x Centripetal Acceleration), where True Weight is the driver's weight (mass x gravitational acceleration) and Centripetal Acceleration is the acceleration required to keep the driver moving in a circular path.

Learn more about centripetal force here:

https://brainly.com/question/1869806

#SPJ11

Other Questions
Define Q as the region that is bounded by the graph of thefunction g(y)=2y1, the y-axis, y=4, and y=5. Use the diskmethod to find the volume of the solid of revolution when QQuestion == Define as the region that is bounded by the graph of the function g(y) = the disk method to find the volume of the solid of revolution when Q is rotated around the y-axis. -2y 1, th a software company innovates constantly to keep up with new rivals that are constantly appearing on the scene. the software industry itself has an enormous number of players to deal with, including retailers, online distributors, educational institutions, and government agencies. where does the company belong on the uncertainty matrix? Use the Root Test to determine if the following series converges absolutely or diverges. 00 9 (-1)" 1 - (-) -9 (Hint: lim (1 +x/n)" = e*) n = 1 n00 ... Since the limit resulting from the Root Test is Kellen has been asked to determine how many people live in the 50 square miles surrounding the location of the proposed building project. What does Kellen need to find?a. population densityb. birthratec. population distributiond. age distribution Lady GaGa donated cash of $300,000 to a public charitythat she has long supported. What is her maximum charitablecontribution deduction for the year 2021 if her AGI is$400,000? Use the fundamental identities to find the value of the trigonometric function.Find csc if sin = 2 /3 and is in quadrant IV. Individuals with anorexia nervosa concentrate on which body cue?1.Hunger2.Controlling food intake3.Anxiety4.Weakness A chain, 40 ft long, weighs 5 lb/ft hangs over a building 120 ft high. How much work is done pulling the chain to the top of the building. a rectangular room is 14 feet by 20 feet. the ceiling is 8 feet high. a. find the length and width of the smaller wall. by (express your answer in feet) b. find the area of the smaller wall. (express your answer in square feet) c. find the area of the larger wall. (express your answer in square feet) d. find the total area of the four walls in the room. (express your answer in square feet) e. if a gallon of paint costs $36.50 and it covers 350 square feet on average, what is the cost of painting the room walls with two coats of paint? f. this room is well-insulated and is on the north side of the house. how large an air conditioner would this room require? round to the nearest thousand btus. hide feedback 15. Compute Siva- 3} (x - 3) dr - either by means of a trigonometric substitution or by observing that the integral gives half the area of a circle of radius 2. Consider the following game:LRT0, 22, 1M1, 41, 1B4, 40, 5(a) (4 pts) Show that for Player 1 the mixed strategy 2/3T + 1/3B (playing T with probability 2/3and playing B with probability 1/3) is always better than pure strategy M whether Player 2 choosesL or R. Therefore M is strictly dominated by the mixed strategy 2/3T + 1/3B.(b) (8 pts) Delete M from player 1's set of pure strategies and then find the mixed-strategy Nashequilibrium (you can assume player 1 chooses T with probability p and chooses B with probability1 - p; player 2 chooses L with probability q and chooses R with probability 1 - q). A calf that weighs 70 pounds at birth gains weight at the rate dwijdt = k1200 - ), where is the weight in pounds and is the time in years. (a) Find the particular solution of the differential equation differential equations(4D-D=e* + 12 e* (D-1) = ex (2 sinx + 4 corx) urgent!!!!please help solve 5,6thank youSolve the following systems of linear equations in two variables. If the system has infinitely many solutions, give the general solution. x+y= 16 5. 6. - 2x + 5y = -42 7x + 2y = 30 = FILL IN THE BLANK. an investment's ___ period is the expected time period to recover the initial investment amount TRUE / FALSE. This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the truth value of the statement vxy(xy= 1) if the domain for the variables consists of the positive real numbers. which of the following is a method to reverse human impacts on the environment? a. construction of housing developments b. desertification c. deforestation d. ecological restoration A random sample of 40 adults with no children under the age of 18 years results in a mean daily leisure time of 574 hours, with a standard deviation of 247 hours. A random sample of 40 adults with children under the age of 18 results in a mean daily leisure time of 4.26 hours, with a standard deviation of 162 hours. Construct and interpret a 95% confidence interval for the mean difference in leisure time between adults with no children and adults with children (442) Lets represent the mean leisure hours of adults with no children under the age of 18 and represent the mean leisure hours of adults with children under the age of 18 The 95% confidence interval for (4 - 2) is the range from hours to hours (Round to two decimal places as needed) which of the following is an example of a fatal chronic disorder?group of answer choices A) varicose veins B) arthritis C) cardiovascular disease D) bursitis The unreliability of memory is a serious problem when it comes to witness testimony,What evidence from the text supports this conclusion?