1. The angular momentum of the combined bullet-block system about the vertical pivot axis is 0.
2. The fraction of the original kinetic energy of the bullet converted into internal energy within the bullet-block system during the collision is given by [m * v² - (M + m) * V²] / [m * v²].
1. To find the angular momentum of the combined bullet-block system about the vertical pivot axis, we need to consider the initial and final angular momentum.
Initially, before the collision, the bullet has no angular momentum about the pivot axis since it is moving parallel to the table and perpendicular to the rod.
After the collision, when the bullet embeds within the block, the combined bullet-block system starts rotating about the pivot axis due to the conservation of angular momentum.
The angular momentum of the system can be calculated using the formula:
Angular momentum = moment of inertia × angular velocity
The moment of inertia of the system depends on the distribution of mass and the axis of rotation. Assuming the block and bullet have negligible rotational inertia compared to the rod, we can consider the moment of inertia to be that of the rod.
The moment of inertia of a rod rotating about one end (pivot) is given by:
I = (1/3) * M * ℓ²
where M is the mass of the block, and ℓ is the length of the rod.
The angular velocity (ω) can be determined by considering the conservation of angular momentum:
Initial angular momentum = Final angular momentum
0 = (1/3) * M * ℓ² * ω
Since the initial angular momentum is zero, the final angular momentum of the system is also zero.
Therefore, the angular momentum of the combined bullet-block system about the vertical pivot axis is 0.
2. To find the fraction of the original kinetic energy of the bullet that is converted into internal energy within the bullet-block system during the collision, we can use the principle of conservation of kinetic energy.
The initial kinetic energy of the bullet before the collision is given by:
Initial kinetic energy = (1/2) * m * v²
After the collision, the bullet embeds within the block, and both the bullet and the block gain internal kinetic energy due to their rotational motion.
The final kinetic energy of the bullet-block system is given by:
Final kinetic energy = (1/2) * (M + m) * V²
where V is the final velocity of the combined bullet-block system after the collision.
Since the bullet and block are now rotating about the pivot axis, part of the initial kinetic energy is converted into internal rotational kinetic energy.
The fraction of the original kinetic energy converted into internal energy can be calculated as:
Fraction of kinetic energy converted = (Initial kinetic energy - Final kinetic energy) / Initial kinetic energy
Substituting the values:
Fraction of kinetic energy converted = [(1/2) * m * v² - (1/2) * (M + m) * V²] / [(1/2) * m * v²]
Simplifying the equation, we can cancel out common terms:
Fraction of kinetic energy converted = [m * v² - (M + m) * V²] / [m * v²]
Therefore, the fraction of the original kinetic energy of the bullet converted into internal energy within the bullet-block system during the collision is given by [m * v² - (M + m) * V²] / [m * v²].
For more such questions on angular momentum visit:
https://brainly.com/question/4126751
#SPJ8
what type of path do the hikers observe that the pack follows?
The group of hikers is easily following a well-worn trail, which they watch intently. This path elegantly meanders through the complex pattern created by nature as it traverses the challenging terrain.
A sinuous course engraved by discovery and adventure, it exposes itself as a tribute to the innumerable footprints that have come before. The route displays the magnificence of nature as it passes through lush woods, peaceful meadows, and bubbling streams, occasionally climbing towering hills and sinking into isolated valleys.
With each bend, spectacular views and legends of long-ago expeditions are revealed. The pack travels this route with unshakable resolve, matching the hikers' wonder as they see the pack's peaceful coexistence with the natural environment.
To know more about hikers :
https://brainly.com/question/30465154
#SPJ1.
What is a benefit of using active solar energy over utility-scale solar energy for a home?
Installation costs are less with active solar systems.
Homeowner is not responsible for installation costs.
Energy comes from the active system, not a grid.
Homeowners will see less cost savings over time.
Using active solar energy for a home offers benefits such as lower installation costs, homeowner control over the system, reduced reliance on the grid, and potential cost savings over time. Option A
A) Installation costs are less with active solar systems: Active solar energy systems, such as solar panels or solar water heaters, can be installed directly on the home or property, eliminating the need for extensive infrastructure development associated with utility-scale solar energy projects.
B) Homeowner is not responsible for installation costs: While utility-scale solar energy projects may require homeowners to bear the costs of installation and infrastructure development, active solar systems for homes typically allow homeowners to directly invest in their own renewable energy solutions.
This means that homeowners have control over the installation process and can choose the system that best fits their budget and energy needs.
C) Energy comes from the active system, not a grid: Active solar systems for homes generate energy on-site using sunlight, allowing homeowners to reduce their reliance on the traditional power grid.
This independence from the grid provides benefits such as energy self-sufficiency, reduced vulnerability to power outages, and potential savings on utility bills. It also allows homeowners to have a direct and tangible impact on reducing their carbon footprint.
D) Homeowners will see less cost savings over time: This statement is incorrect. Over time, homeowners who invest in active solar energy systems can potentially experience significant cost savings. By generating their own renewable energy, homeowners can reduce their reliance on electricity provided by the utility company, which often comes with rising costs.
As utility rates increase, the savings from generating solar energy can become more substantial, allowing homeowners to recoup their initial investment and potentially even earn credits through net metering programs.
In summary, using active solar energy for a home offers benefits such as lower installation costs, homeowner control over the system, reduced reliance on the grid, and potential cost savings over time. These advantages make it an attractive option for homeowners seeking to embrace renewable energy and reduce their environmental impact. Option A
For more such questions on installation costs visit:
https://brainly.com/question/30642460
#SPJ8
what is the pressure of a tank of uniform cross sectional area 4.0m2 when the tank is filled with water a depth of 6m when given that 1 atm=1.013 x 10^5pa density of water=1000kgm-3 g=9.8m/s2
The pressure of a tank of uniform cross-sectional area 4.0m2 when the tank is filled with water at a depth of 6m is 58800 Pa.
Pressure calculationTo find the pressure in the tank, we can use the formula for pressure:
Pressure = density x gravity x height
Density of water (ρ) = 1000 kg/m³
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 6 m
Thus:
Pressure = 1000 kg/m³ x 9.8 m/s² x 6 m
Pressure = 58800 kg/(m·s²)
Since the unit of pressure is Pascal (Pa), which is equivalent to kg/(m·s²), the pressure in the tank is:
Pressure = 58800 Pa
Therefore, the pressure in the tank when it is filled with water to a depth of 6 m is 58800 Pascal.
More on pressure can be found here: https://brainly.com/question/21611721
#SPJ1
what is the pressure of a tank of uniform cross sectional area 4.0m2 when the tank is filled with water a depth of 6m when given that 1 atm=1.013 x 10^5pa density of water=1000kgm-3 g=9.8m/s2
The pressure of the tank, when filled with water at a depth of 6 m, is approximately 580.124 atmospheres (atm). To calculate the pressure of the tank, one can use the equation: Pressure (P) = Density (ρ) × g × Depth (h)
Pressure (P) = Density (ρ) × g × Depth (h)
Given: Density of water (ρ) = 1000 kg/m³
Acceleration due to gravity (g) = 9.8 m/s²
Depth (h) = 6 m
Using the given values, one can calculate the pressure:
Pressure = 1000 kg/m³ × 9.8 m/s² × 6 m Pressure
= 58800 kg·m⁻¹·s⁻²
Now, let's convert the units to pascals (Pa) using the conversion 1 atm = 1.013 x [tex]10^5[/tex] Pa:
Pressure = 58800 kg·m⁻¹·s⁻² × (1 atm / 1.013 x[tex]10^5[/tex] Pa)
Pressure = 580.124 atm
Learn more about pressure calculation here.
https://brainly.com/question/32496499
#SPJ1
The diagram shows the electric field due to point charge Q. The negative charge, A, is within the field. Charge Q has vectors radially inward starting perpendicular from the surface. The farther you get from the charge, the shorter the vectors. All vectors point towards the charge. A point labeled A is just to the right of the charged object. Which statements are correct? Check all that apply. Charge Q is positive. Charge Q is negative. The electric field is uniform. The electric field is nonuniform. If charge A is negative, it moves away from charge Q. If charge A is positive, it moves away from charge Q.
The correct statements are:Charge Q is positive, the electric field is nonuniform and if charge A is negative, it moves away from charge Q.
Based on the given information, we can make the following conclusions:
Charge Q is positive: The diagram shows that the electric field vectors point radially inward towards charge Q. Since like charges repel each other, for the vectors to point towards charge Q, it must be positive.
The electric field is nonuniform: The statement mentions that "the farther you get from the charge, the shorter the vectors." This implies that the magnitude of the electric field decreases with distance from charge Q. Therefore, the electric field is nonuniform.If charge A is negative, it moves away from charge Q: In the diagram, charge A is within the electric field of charge Q. Since opposite charges attract each other, if charge A is negative, it will experience a force that pulls it towards charge Q. Therefore, it will move towards charge Q, not away from it.
If charge A is positive, it moves away from charge Q: This statement is incorrect. According to the previous conclusion, if charge A is positive, it will experience a force that attracts it towards charge Q. Therefore, it will move towards charge Q, not away from it.
The provided information does not specify the behavior of charge A when it is positive. It is possible that charge A could move towards charge Q, or it could experience other forces depending on its position and the magnitude of the charges involved.
for such more questions on electric
https://brainly.com/question/1100341
#SPJ8
t is the relationship between the ping pong ball's release height and its bounce height, in this
timent? In your answer make sure to:
Restate the question and then Answer it by identifying a relationship shown in the data.
Cite three pieces of numerical evidence to fully show the relationship in the data.
Explain how each piece of evidence supports your claim. Be as specific as possible
Describe how the relationship in the data connects to the following concept:
"Potential energy can be converted into kinetic energy. Kinetic energy can also be
converted back into potential energy."
when the trigger is pulled on a cordless drill it takes 0.36s for the drill bit to reach 5200rpm. If the drill spins counterclockwise then, what is the angular acceleration of the drill bit?
The angular acceleration of the drill is 1512.5 rad/s².
Time taken for the drill, t = 0.36 s
Angular velocity of the drill, ω = 5200 rpm = 544.5 rad/s
The change in angular velocity that a spinning object experiences per unit of time is expressed quantitatively as angular acceleration, also known as its rotational acceleration.
It is a vector quantity that has two distinct directions or senses as well as a component of magnitude. The unit of angular acceleration is rad/s².
So,
The expression for the angular acceleration is given by,
α = ω/t
α = 544.5/0.36
α = 1512.5 rad/s²
To learn more about angular acceleration, click:
https://brainly.com/question/1980605
#SPJ1