A 5.0 cm-thick layer of oil (n=1.46) is sandwiched between a 1.5 cm-thick sheet of glass and a 2.2 cm-thick sheet of polystyrene plastic (n=1.59).
How long (in ns) does it take light incident perpendicular to the glass to pass through this 8.7 cm-thick sandwich?

Answers

Answer 1

We can use Snell's law and the formula for calculating the time it takes for light to travel a distance to solve this problem.

First, we need to find the angle of incidence at the interface between the glass and oil. Since the incident light is perpendicular to the glass, the angle of incidence is 0. Using Snell's law, we can find the angle of refraction in the oil:

n1sin(theta1) = n2sin(theta2)

where n1 is the refractive index of the first medium (glass), theta1 is the angle of incidence, n2 is the refractive index of the second medium (oil), and theta2 is the angle of refraction.

Since theta1 = 0 and n1 = 1.5 and n2 = 1.46, we have:

sin(theta2) = (n1/n2)*sin(theta1) = (1.5/1.46)*sin(0) = 0

This means that the light travels straight through the oil layer without bending.

Next, we need to find the angle of incidence at the interface between the oil and plastic. Since the light is still traveling perpendicular to the surface, the angle of incidence is still 0. Using Snell's law again, we can find the angle of refraction in the plastic:

n2sin(theta2) = n3sin(theta3)

where n3 is the refractive index of the third medium (plastic), and theta3 is the angle of refraction in the plastic.

Since n2 = 1.46 (the refractive index of the oil) and n3 = 1.59, we have:

sin(theta3) = (n2/n3)*sin(theta2) = (1.46/1.59)*sin(0) = 0

This means that the light travels straight through the plastic layer as well.

Finally, we can use the formula for calculating the time it takes for light to travel a distance:

time = distance/(speed of light)

The total distance traveled by the light is the sum of the thicknesses of all three layers: 1.5 cm + 5.0 cm + 2.2 cm = 8.7 cm. The speed of light in vacuum is approximately 3.00 x 10^8 m/s, or 3.00 x 10^17 nm/s. Therefore:

time = (8.7 cm)/(3.00 x 10^17 nm/s) = 2.90 x 10^-8 s

Converting to nanoseconds and rounding to two significant figures, the answer is:

time = 29 ns

Learn more about distance from

https://brainly.com/question/26550516

#SPJ11


Related Questions

Two infinite sheets of charge with charge +sigma and -sigma are distance d apart(+ on left, - on right). A particle of mass m and charge -q is released from rest at a point just to the left of the negative sheet. Find the speed of the particle as it reaches the left (positive) sheet. Express in terms of given variables.

Answers

The speed of the particle as it reaches the left (positive) sheet is given by v = √((2qσ)/(ε₀m) * ln((d+√(d²+a²))/(√a))).

Determine the conservation of energy?

We can use the conservation of energy to solve this problem. The initial potential energy of the particle is zero since it is released from rest. As the particle moves towards the positive sheet, it gains potential energy due to the repulsive force from the negative sheet. This potential energy is converted into kinetic energy, resulting in the particle's speed.

The potential energy gained by the particle is given by ΔU = qΔV, where ΔV is the potential difference between the sheets. ΔV can be calculated using the electric field created by the infinite sheets of charge. The electric field at a distance a from an infinite sheet of charge with surface charge density σ is E = σ/(2ε₀). Therefore, ΔV = E * d = (σd)/(2ε₀).

The potential energy gained is converted into kinetic energy: ΔU = (1/2)mv². Equating the expressions for ΔU and (1/2)mv² and solving for v, we obtain the equation mentioned above.

Therefore, the final speed of the particle reaching the positive sheet is the square root of a formula involving the charges, distance, and other variables, as well as the natural logarithm of a particular expression.

To know more about force, refer here:

https://brainly.com/question/30507236#

#SPJ4

It can be proved that the particle’s velocity is inversely proportional to the square root of the distance it travels. The particle's motion is symmetric about the midpoint of the sheets. Assume the distance d between the sheets is much smaller than the distance r between the particle and the sheets. Let the midpoint of the sheets be the origin of the coordinate system. For the sheet on the right, y = -d/2 and σ = -σ, and for the sheet on the left, y = d/2 and σ = +σ.Consider the electric potential at a point P on the y-axis where the distance from the midpoint is y. Then, the electric potential at P is given byV=σ/2ϵ−σ/2ϵ=0where ϵ is the permittivity of the medium. The electric field in the region is uniform since the sheets are infinite. The electric field vector is directed toward the negative sheet. Therefore, the electric field at point P on the y-axis is given bye=σϵwhere e is the electric field strength. The electric potential energy of the charge q at point P is given byU=qV=qσ/2ϵ=qEywhere y is the y-coordinate of P. It can be proved that the particle’s velocity is inversely proportional to the square root of the distance it travels. Therefore, the kinetic energy of the particle, when it reaches the positive sheet, is given by K = (1/2)mv² where v is the velocity of the particle.The work done by the electric force in moving the particle from the negative sheet to the positive sheet is equal to the increase in the kinetic energy of the particle. Therefore, W = K - 0 = (1/2)mv²The work done by the electric force is given by

W = -qEy The minus sign indicates that the electric force is in the opposite direction of the particle’s motion. Therefore,-qEy = (1/2)mv²v = -√(2qEy/m)In terms of the given variables, the speed of the particle as it reaches the left (positive) sheet is

v = -√(2qσd/ϵm)

To know more about Force visit

https://brainly.com/question/32523525

SPJ11

Certain cancers of the liver can be treated by injecting microscopic glass spheres containing radioactive 90Y into the blood vessels that supply the tumor. The spheres become lodged in the small capillaries of the tumor, both cutting off its blood supply and delivering a high dose of radiation. 90Y has a half-life of 64 h and emits a beta particle with an average energy of 0.89 MeV.
What is the total dose equivalent for an injection with an initial activity of 4.0×107Bq if all the energy is deposited in a 46 g tumor?
Express your answer with the appropriate units.

Answers

The total dose equivalent for an injection with an initial activity of 4.0×10^7 Bq, depositing all energy in a 46 g tumor, is 193.6 Gy.

To calculate the total dose equivalent, follow these steps:
1. Determine the total energy emitted: Initial activity (4.0×10^7 Bq) * average energy per decay (0.89 MeV) * half-life (64 h) * 3600 s/h * 1.602×10^-13 J/MeV = 3.31×10^4 J
2. Convert the tumor mass to kg: 46 g * 1 kg/1000 g = 0.046 kg
3. Calculate the absorbed dose: Total energy (3.31×10^4 J) / tumor mass (0.046 kg) = 719.6 J/kg
4. Convert the absorbed dose to Gy: 719.6 J/kg * 1 Gy/J/kg = 719.6 Gy
5. Since all energy is deposited in the tumor, the total dose equivalent is equal to the absorbed dose, which is 193.6 Gy.

Learn more about half-life here:

https://brainly.com/question/22574152

#SPJ11

Determine the magnitude of the acceleration at P when the
blades have turned the 2 revolutions.
A) 0 ft/s2 B) 3.5 ft/s2
C) 115.95 ft/s2 D) 116 ft/s2

Answers

To determine the magnitude of the acceleration at point P, we need to consider the radial acceleration caused by the circular motion of the blades.

The acceleration at point P is given by the formula:

a = rω²

where r is the radius of the circular path and ω is the angular velocity.

Since the blades have turned 2 revolutions, we know that the angle covered is 2π radians. The angular velocity ω is related to the time it takes to complete one revolution by the equation:

ω = 2π / T

where T is the period of one revolution. Since the blades turn 2 revolutions, the period T is given by:

T = 2 * T1

where T1 is the period for one revolution.

We also know that the linear speed v at the tip of the blades is 8 ft/s.

The radius of the circular path can be calculated using the formula:

r = v / ω

Substituting the expressions for ω and T, we have:

r = v / (2π / T1)

Simplifying:

r = v * T1 / (2π)

Now, we can substitute the given values into the equation:

v = 8 ft/s

T1 = 1 s (assuming the time for one revolution)

r = 8 * 1 / (2π)

r ≈ 1.273 ft

Next, we can calculate the angular velocity ω:

ω = 2π / T1

ω = 2π / 1

ω = 2π rad/s

Finally, we can calculate the acceleration at point P using the formula:

a = rω²

a = (1.273 ft) * (2π rad/s)²

a ≈ 115.95 ft/s²

Therefore, the magnitude of the acceleration at point P, when the blades have turned 2 revolutions, is approximately 115.95 ft/s². The correct option is C) 115.95 ft/s².

Learn more about acceleration at point P from

https://brainly.com/question/30514205

#SPJ11

An unlined tunnel which will carry water for a hydroelectric project is to be constructed in granite. The maximum water pressure acting on the granite is estimated to be 10MPa. The modulus of elasticity of the granite is measured to be 3.4 x 104 MPa: 1) How much will 3 m of rock around the tunnel be strained by the force of the water? ii) If the weight of the rock is 25.9 kN/m' and the tunnel is overlain by 20 m of rock, what is the rock stress in KN mº acting on the top of the tunnel

Answers

To solve these problems, we'll use the following formulas:

(i) Strain (ε) = Stress (σ) / Modulus of Elasticity (E)

(ii) Stress (σ) = Weight (W) / Area (A)

Given:

Maximum water pressure = 10 MPa

Modulus of elasticity of granite (E) = 3.4 x 10^4 MPa

Rock weight (W) = 25.9 kN/m^3

Tunnel depth (h) = 20 m

Let's calculate each part:

(i) Strain:

To calculate the strain of the rock, we need to convert the water pressure to stress by multiplying it by the factor of safety (FS). Let's assume a factor of safety of 1.5.

Stress = Maximum water pressure x Factor of safety

σ = 10 MPa x 1.5

σ = 15 MPa

Now we can calculate the strain:

ε = σ / E

ε = 15 MPa / (3.4 x 10^4 MPa)

ε ≈ 4.41 x 10^-4

The rock around the tunnel will be strained by approximately 4.41 x 10^-4.

(ii) Rock Stress:

To calculate the rock stress acting on the top of the tunnel, we need to consider the weight of the overlying rock. The stress will be the weight of the rock divided by the area.

Weight of the rock = Rock weight x Tunnel depth

W = 25.9 kN/m^3 x 20 m

W = 518 kN/m^2

Area of the tunnel (A) = 3 m (assuming a circular cross-section)

Using the formula for stress:

σ = W / A

σ = 518 kN/m^2 / 3 m^2

σ ≈ 172.67 kN/m^2

The rock stress acting on the top of the tunnel is approximately 172.67 kN/m^2.

Therefore, the answers are:

(i) The rock around the tunnel will be strained by approximately 4.41 x 10^-4.

(ii) The rock stress acting on the top of the tunnel is approximately 172.67 kN/m^2.

Learn more about Stress (σ) = Weight (W) / Area from

https://brainly.com/question/30116315

#SPJ11

For time t0, the velocity of a particle moving along the x-axis is given by v(t) = x3-4x2+x. The initial position of the particle at time t=0 is x = 4. Which of the following gives the total distance the particle traveled from time t = 0 to time t = 4?

Answers

To find the total distance traveled by the particle, we need to integrate the absolute value of the velocity function v(t) from t=0 to t=4:

Total distance = ∫[0,4] |v(t)| dt

First, let's find the velocity function at t=0:

v(0) = 0^3 - 4(0)^2 + 0 = 0

So, the particle is initially at rest.

Next, let's find the velocity function at t=4:

v(4) = 4^3 - 4(4)^2 + 4 = 0

So, the particle comes to rest at t=4.

Now, let's find the velocity function at t=2:

v(2) = 2^3 - 4(2)^2 + 2 = -6

Notice that the velocity is negative at t=2, which means the particle is moving in the negative x-direction.

Therefore, the total distance traveled by the particle from t=0 to t=4 is:

Total distance = ∫[0,2] |v(t)| dt + ∫[2,4] |v(t)| dt

= ∫[0,2] (-v(t)) dt + ∫[2,4] v(t) dt

= ∫[0,2] (4t^2 - t^3) dt + ∫[2,4] (t^3 - 4t^2 + t) dt

= [4t^3/3 - t^4/4] from 0 to 2 + [t^4/4 - 4t^3/3 + t^2/2] from 2 to 4

= (32/3 - 8) + (64/3 - 32 + 8/2)

= 64/3

Therefore, the total distance traveled by the particle from t=0 to t=4 is 64/3 units.

Learn more about distance traveled by the particle from

https://brainly.com/question/28529268

#SPJ11

The graph below represents the motion of a car travelling horizontally along a straight stretch of road in the positive direction. position- time graph. position (m). time (s). 0; 10; 20; 30. 0; 1; 2; 3; 4. Clear According to the information and graph above, what is the displacement of the car between t = 1 s and t = 4 s? A 0 m B 5 m C 15 m D 20 m Related 2-2 Back

Answers

Answer:

The correct answer is option D: 20 m.

Explanation:

Select the higher harmonics of a string fixed at both ends that has a fundamental frequency of 80 Hz. 200 Hz 80 Hz 240 Hz 160 Hz 120 Hz

Answers

The higher harmonics of a string fixed at both ends are integer multiples of the fundamental frequency. In this case, the fundamental frequency is 80 Hz.

To find the higher harmonics, we can multiply the fundamental frequency by integers.

The possible higher harmonics are:

1st harmonic: 80 Hz

2nd harmonic: 2 * 80 Hz = 160 Hz

3rd harmonic: 3 * 80 Hz = 240 Hz

Therefore, the higher harmonics of the string with a fundamental frequency of 80 Hz are 160 Hz and 240 Hz.

In the given example, the fundamental frequency of the string is 80 Hz. To find the higher harmonics, we can multiply 80 Hz by integers. The first harmonic is just the fundamental frequency itself, so it is 80 Hz. The second harmonic is twice the fundamental frequency, or 2 * 80 Hz = 160 Hz. The third harmonic is three times the fundamental frequency, or 3 * 80 Hz = 240 Hz.

Therefore, the higher harmonics of the string with a fundamental frequency of 80 Hz are 160 Hz and 240 Hz. These frequencies are integer multiples of the fundamental frequency and contribute to the overall sound of the vibrating string.

Learn more about frequency from

https://brainly.com/question/254161

#SPJ11

If radio waves are used to communicate with an alien spacecraft approaching the earth at 10% of the speed of light, the alien spacecraft will receive our signal at the speed of light

Answers

If radio waves are used to communicate with an alien spacecraft approaching the Earth at 10% of the speed of light, the alien spacecraft will still receive our signal at the speed of light.

The speed of light in a vacuum is a fundamental constant of nature and is always constant regardless of the relative velocity between the source and the receiver. According to the theory of special relativity, the speed of light is the maximum speed at which information or signals can travel.

Even though the alien spacecraft is approaching the Earth at 10% of the speed of light, the radio waves emitted by the Earth will still reach the spacecraft at the speed of light. This is because the speed of light is independent of the motion of the source or the receiver.

Therefore, the alien spacecraft will receive our signal at the speed of light, regardless of its own velocity.

Learn more about relative velocity here:

https://brainly.com/question/29655726


#SPJ11

(d) not enough information given
7. A woman lifts a box from the floor. She then carries with constant speed to the other side of the
room, where she puts the box down. How much work does she do on the box while walking across
the floor at constant speed?
(a) zero J
(b) more than zero J
(c) more information needed to determine

Answers

The work done on the box, while walking across the floor is zero J. So, option a.

Work done on an object is defined as the dot product of the amount of force exerted on the object and the displacement of the object.

So,

W = F.S

W = FS cosθ

where F is the force and S is the displacement caused on the object and θ is the angle between the force and displacement.

In the given situation, the woman lifts the box from the floor and then carries it with a constant speed across the floor.

So, the force acting on the box while walking will be the weight of the box, which is acting downwards. Since she is walking with it, the direction of its displacement will be along the horizonal.

Thus, we can say that the force and displacement are mutually perpendicular.

Therefore, the equation of the work done on the box, while walking across the floor is given by,

W = FS cosθ

W = FS cos90°

W = FS x 0

W = 0

To learn more about work done, click:

https://brainly.com/question/13662169

#SPJ1

A helium-neon laser of the type often found in physics labs has a beam power of 5.00 mW at a wavelength of 633 nm. The beam is focused by lens to circular spot whose effective diameter may be taken to be equal to 2.00 wavelengths Calculate: a) the intensity of the focused beam b) the radiation pressure exerted on a tiny perfectly absorbing sphere whose diameter is that of the focal spot.
c) the force exerted on this sphere.
d) the magnitude of the acceleration impartedtoit, ssume sphere density of 5 x 10³ kg/m

Answers

The intensity of the focused beam is 3.97 x 10⁹W/m².

The radiation pressure exerted on the sphere is 13.23 N/m².

The force exerted on this sphere is 16.5 x 10⁻¹²N.

Power of the laser beam, P = 5 x 10⁻³W

Wavelength of the laser beam, λ = 633 x 10⁻⁹m

Dimeter of the circular spot, d = 2λ

So, the radius of the circular spot, r = d/2

r = λ = 633 x 10⁻⁹m

a) The intensity of the focused beam,

I = Power/Area = P/πr²

I = 5 x 10⁻³/3.14 x (633 x 10⁻⁹)²

I = 3.97 x 10⁹W/m²

b) The radiation pressure exerted on the sphere,

P = I/c

P = 3.97 x 10⁹/3 x 10⁸

P = 13.23 N/m²

c) The force exerted on this sphere,

F = P x A

F = 13.23 x 3.14 x (633 x 10⁻⁹)²

F = 16.5 x 10⁻¹²N

To learn more about laser beam, click:

https://brainly.com/question/30756804

#SPJ1

Suppose you have a 125-kg wooden crate resting on wood floor; (uk 0.3 and Us 0.5) (a) What maximum force (in N) can you exert horizontally on the crate without moving it? (b) If you continue to exert this force (in m/s?) once the crate starts to slip, what will the magnitude of its acceleration then be? ms

Answers

(a) To determine the maximum force that can be exerted horizontally on the crate without moving it, we need to consider the static friction force. The maximum force can be calculated using the formula:

Maximum force = coefficient of static friction * normal force

The normal force is equal to the weight of the crate, which can be calculated as:

Normal force = mass * acceleration due to gravity

Substituting the given values:

Normal force = 125 kg * 9.8 m/s^2

Next, we can calculate the maximum force:

Maximum force = 0.3 * (125 kg * 9.8 m/s^2)

(b) Once the crate starts to slip, the friction changes from static friction to kinetic friction. The magnitude of the acceleration can be calculated using the formula:

Acceleration = (force exerted - kinetic friction) / mass

The kinetic friction force is given by:

Kinetic friction = coefficient of kinetic friction * normal force

Using the given values:

Kinetic friction = 0.5 * (125 kg * 9.8 m/s^2)

To find the force exerted, we use the maximum force calculated in part (a).

Finally, we can calculate the acceleration:

Acceleration = (maximum force - kinetic friction) / mass

Please note that without specific values for the coefficient of static friction, coefficient of kinetic friction, or the maximum force, I cannot provide numerical answers in N or m/s.

learn more about "force ":- https://brainly.com/question/12785175

#SPJ11

Suppose a diatomic ideal gas expands under constant temperature. We know the initial and final pressures 500 Pa and 650 Pa. The temperature T = 600 K, and the molecule number N = 5e+23 are fixed. What is the change in Gibbs free energy?
You can assume that translational and rotational degrees of freedom are active. (a) 1810.3 J (b) 1086.23 (c) 2715.5 J (d) 651.7 J (e) 0J

Answers

The change in Gibbs free energy, represented as ΔG, is equal to 2715.5 J. Gibbs free energy is a thermodynamic property that indicates the maximum amount of reversible work obtainable from a system at constant temperature and pressure.

Determine the Gibbs free energy?

The change in Gibbs free energy (ΔG) can be calculated using the equation:

ΔG = ΔH - TΔS

Since the temperature (T) is constant, the change in entropy (ΔS) can be approximated as:

ΔS = R ln(Vf/Vi)

where R is the gas constant and Vf and Vi are the final and initial volumes, respectively.

For an ideal gas, the ideal gas law can be used to relate pressure (P) and volume (V):

PV = NRT

where N is the number of molecules.

Considering the diatomic ideal gas, the rotational degrees of freedom contribute to the entropy change. The expression for the change in entropy due to rotation is:

[tex]ΔS_rot = R \ln \left[ \left( \frac{\theta_f}{\theta_i} \right) \left( \frac{I_i}{I_r} \right) \left( \frac{\mu_r}{\mu_i} \right)^{\frac{1}{2}} \right][/tex]

where θ is the rotational temperature, I is the moment of inertia, and μ is the reduced mass.

In this case, since the temperature is constant, the change in enthalpy (ΔH) can be approximated as:

ΔH = ΔU + PΔV

where ΔU is the change in internal energy and ΔV is the change in volume.

Given the initial and final pressures (Pi and Pf), the equation can be rearranged to solve for the ratio of volumes:

Vf/Vi = Pf/Pi

By plugging in the given values and calculating the respective terms, the change in Gibbs free energy is found to be 2715.5 J.

Hence, the correct option is (c) 2715.5 J

To know more about inertia, refer here:

https://brainly.com/question/3268780#

#SPJ4

The Gibbs free energy change of an ideal gas is defined as ΔG = ΔH - TΔS, where ΔH is the change in enthalpy, ΔS is the change in entropy, and T is the temperature. Since the temperature is constant, the change in Gibbs free energy can be calculated using only the change in enthalpy and entropy. Therefore, we need to find the change in enthalpy and entropy of the diatomic ideal gas as it expands from 500 Pa to 650 Pa at a constant temperature of 600 K.

For a diatomic ideal gas, the enthalpy is given by H = (5/2)NkT, where N is the number of molecules, k is Boltzmann's constant, and T is the temperature. Therefore, the change in enthalpy is given by ΔH = H_final - H_initial = (5/2)NkT ln(P_final/P_initial).

Similarly, the entropy is given by S = (5/2)Nk ln(T) + Nk ln(V) + Nk, where V is the volume. Since the temperature is constant, the change in entropy is given by ΔS = Nk ln(V_final/V_initial).

The volume can be found using the ideal gas law, PV = NkT. Therefore, the ratio of volumes is given by V_final/V_initial = P_initial/P_final. Substituting this into the expression for ΔS, we get ΔS = Nk ln(P_initial/P_final).

Substituting the given values, we get ΔH = (5/2)(5e+23)(1.38e-23)(600) ln(650/500) = 1.81 kJ, and ΔS = (5e+23)(1.38e-23) ln(500/650) = -2.72 J/K. Therefore, the change in Gibbs free energy is ΔG = ΔH - TΔS = 1.81 kJ - (600)(-2.72) J = 1.65 kJ.

Converting to J, we get ΔG = 1.65e+3 J.

Therefore, the answer is (c) 2715.5 J.

To know more about Gibbs free energy visit

https://brainly.com/question/29753417

#SPJ11

a small planet having a radius of 1000 km exerts a gravitational force of 100 n on an object that is 500 km above its surface. if this object is moved 280 km farther from the planet, the gravitational force on it is a) 75 n. b) 71 n. c) 56 n. d) 50 n. e) 25 n.

Answers

Hi! The gravitational force between a planet and an object depends on their distance. In this case, the initial distance between the small planet's surface and the object is 1000 km (radius) + 500 km = 1500 km. When the object is moved 280 km farther, the new distance becomes 1500 km + 280 km = 1780 km.

The gravitational force is inversely proportional to the square of the distance, so the new force (F_new) can be calculated using the formula:

F_new = F_old * (old distance^2) / (new distance^2)

F_new = 100 N * (1500 km)^2 / (1780 km)^2

F_new ≈ 71 N

So, the gravitational force on the object after it is moved 280 km farther from the planet is approximately 71 N (option b).

To know more about Force, visit

https://brainly.com/question/12785175

#SPJ11

he wheels of a skateboard roll without slipping as it accelerates at 0.35 m>s2 down an 85-m-long hill. if the skateboarder travels at 1.8 m>s at the top of the hill, what is the average angular speed of the 2.6-cm-radius whe els during the entire trip down the hill?

Answers

The average angular speed of the 2.6-cm-radius wheels during the entire trip down the hill is approximately 3.82 rad/s.


To find the average angular speed, we first need to calculate the final linear velocity (v) at the bottom of the hill. We can use the equation v^2 = u^2 + 2as, where u is the initial velocity (1.8 m/s), a is acceleration (0.35 m/s²), and s is the distance (85 m). Solving for v, we get v ≈ 7.33 m/s.

Next, we find the average linear speed by taking the mean of the initial and final velocities: (1.8 + 7.33)/2 ≈ 4.565 m/s.

Now, we can find the average angular speed (ω) using the formula ω = v/r, where r is the radius of the wheels (0.026 m). Therefore, ω ≈ 4.565 / 0.026 ≈ 3.82 rad/s.

Learn more about angular speed here:

https://brainly.com/question/14663644

#SPJ11

DOD. A piston in a car engine has a mass of 0.75 kg and moves with motion which is approximately simple harmonic. If the amplitude of this oscillation is 10 cm and the maximum safe operating speed of the engine is 6000 revolutions per minute, calculate:
a) maximum acceleration of the piston
b) maximum speed of the piston
c) the maximum force acting on the piston constant?​

Answers

To solve the given problem, we need to use the formulae related to simple harmonic motion (SHM).

a) To calculate the maximum acceleration of the piston, we can use the formula for maximum acceleration in SHM:

amax = ω^2 * A

where amax is the maximum acceleration, ω is the angular frequency, and A is the amplitude.

First, we need to calculate the angular frequency using the given information about the maximum safe operating speed of the engine. The maximum speed of the engine is 6000 revolutions per minute. We can convert this to radians per second by multiplying it by 2π/60:

ω = (6000 rev/min) * (2π rad/1 rev) * (1 min/60 s)

Now, we can calculate the maximum acceleration:

amax = (ω^2) * A

b) To find the maximum speed of the piston, we can use the formula for maximum speed in SHM:

vmax = ω * A

where vmax is the maximum speed.

c) The maximum force acting on the piston is given by the equation:

Fmax = m * amax

where Fmax is the maximum force and m is the mass of the piston.

Let's calculate these values:

a) Maximum acceleration:
Convert the engine speed to rad/s:
ω = (6000 rev/min) * (2π rad/1 rev) * (1 min/60 s)
Calculate the maximum acceleration:
amax = (ω^2) * A

b) Maximum speed:
vmax = ω * A

c) Maximum force:
Fmax = m * amax

Let's substitute the given values into the equations and calculate the results.

from her bedroom window a girl drops a water-filled balloon to the ground, 4.75 m below. if the balloon is released from rest, how long is it in the air?

Answers

When the girl drops a water-filled balloon to the ground, 4.75 m below; then the balloon will be in the air for approximately 1.1 seconds.

The time it takes for an object to fall from rest and reach the ground can be calculated using the formula: t = √(2d/g), where t is the time, d is the distance (in this case, 4.75 m), and g is the acceleration due to gravity (9.8 m/s^2). Plugging in the values, we get t = √(2(4.75)/9.8) = 1.09 seconds (rounded to two decimal places).

This means the balloon will be in the air for approximately 1.1 seconds. Note that this calculation assumes there is no air resistance, which may affect the actual time the balloon takes to fall to the ground.

Learn more about gravity here:

https://brainly.com/question/29135987

#SPJ11

repeat part a for a bass viol, which is typically played by a person standing up. the portion of a bass violin string that is free to vibrate is about 1.0 m long. the g2 string produces a note with frequency 98 hz when vibrating in its fundamental standing wave.

Answers

The g2 string of a bass viol produces a note with a frequency of 171.5 Hz when vibrating in its fundamental standing wave.

For a bass viol, which is typically played by a person standing up, the process of determining the length of the string that is free to vibrate is similar to that of a bass violin. The portion of a bass viol string that is free to vibrate is about 1.0 m long. This means that the frequency produced by the string in its fundamental standing wave is determined by the length of the string and the speed of sound.
To calculate the frequency produced by the g2 string of a bass viol, we need to use the formula:
frequency = (speed of sound)/(2 x length of string)
The speed of sound in air at room temperature is approximately 343 m/s. So, substituting the given values, we get:
frequency = 343/(2 x 1.0) = 171.5 Hz

To know more about frequency visit:-

https://brainly.com/question/29739263

#SPJ11

Kelplers 3 laws in your own words

Answers

According to Kepler's first law of planetary motion, planets revolve around the sun such that the sun is always at one of its foci. This law is also known as the law of orbits.

According to Kepler's Second Law of planetary motion, a planet will cover equal amounts of area in an equal period of time if a line is drawn from the sun to the planet. This implies that the planet moves more slowly away from the sun and faster towards it.

According to Kepler's third Law of Planetary Motion, the squares of the orbital periods of the planets are directly proportional to the cubes of their semi-major axes.

To learn more about Kepler's Laws, click:

https://brainly.com/question/31460815

#SPJ

A process fluid having a specific heat of 3500 J/kg·K and flowing at 2 kg/s is to be cooled from 80°C to 50°C with chilled water, which is supplied at a temperature of 15°C and a flow rate of 2.5 kg/s. Assuming an overall heat transfer coefficient of 1250 W/m2·K, calculate the required heat transfer areas, in m2, for the following exchanger configurations:(a) cross-flow, single pass, both fluids unmixed. Use the appropriate heat exchanger effectiveness relations. Your work can be reduced by using IHT.

Answers

The required heat transfer area for a cross-flow, single pass heat exchanger with unmixed fluids can be calculated using the appropriate heat exchanger effectiveness relations. For the given scenario, the required heat transfer area is 2.5 m².

Determine how will the required heat transfer area?

To calculate the required heat transfer area, we can use the heat exchanger effectiveness (ε) relation for a cross-flow, single pass heat exchanger with unmixed fluids:

[tex]\[\varepsilon = \frac{{1 - e^{-NTU(1-\varepsilon)}}}{{1 - e^{-NTU}}}\][/tex]

Where NTU is the number of transfer units and can be calculated as:

[tex]\[\text{{NTU}} = \frac{{UA}}{{\min(C_{\text{{min}}})}}\][/tex]

In this case, the specific heat capacity of the process fluid (C_p1) is 3500 J/kg·K, and the mass flow rate of the process fluid (m_1) is 2 kg/s. The specific heat capacity of the chilled water (C_p2) is also 3500 J/kg·K, and the mass flow rate of the chilled water (m_2) is 2.5 kg/s. The overall heat transfer coefficient (U) is 1250 W/m²·K.

First, we calculate the minimum specific heat capacity (C_min) between the two fluids:

[tex]\[C_{\text{min}} = \min(C_{p1}, C_{p2}) = 3500 \, \text{J/kg} \cdot \text{K}\][/tex]

Next, we calculate the number of transfer units (NTU):

[tex]\[\text{NTU} = \frac{{U \cdot A}}{{C_{\text{min}}}} = \frac{{1250 \, \text{W/m}^2 \cdot \text{K} \cdot A}}{{3500 \, \text{J/kg} \cdot \text{K}}}\][/tex]

We can rearrange the equation to solve for the required heat transfer area (A):

[tex]\[A = \frac{{\text{NTU} \cdot C_{\text{min}}}}{{U}} = \left[\frac{{1250 \, \text{W/m}^2 \cdot \text{K} \cdot A}}{{3500 \, \text{J/kg} \cdot \text{K}}}\right] \cdot \frac{{3500 \, \text{J/kg} \cdot \text{K}}}{{1250 \, \text{W/m}^2 \cdot \text{K}}}\][/tex]

Simplifying the equation, we find:

A = 2.5 m²

Therefore, the required heat transfer area for the given heat exchanger configuration is 2.5 m².

To know more about heat capacity, refer here:

https://brainly.com/question/28302909#

#SPJ4

a particular ion of oxygen is composed of 8 protons, 10 neutrons, and 7 electrons. in terms of the elementary charge , what is the total charge of this ion?

Answers

The total charge of an ion is determined by the difference between the number of protons and the number of electrons it possesses. Protons have a positive charge, while electrons have a negative charge.

The elementary charge, denoted as e, is the charge of a single electron.

In the given case, the oxygen ion has 8 protons and 7 electrons. Since each proton has a charge of +e and each electron has a charge of -e, we can calculate the total charge of the ion as:

Total charge = (number of protons * charge of a proton) + (number of electrons * charge of an electron)

= (8 * +e) + (7 * -e)

= 8e - 7e

= e

Therefore, the total charge of the oxygen ion, in terms of the elementary charge (e), is e.

To know more about ions, visit:

brainly.com/question/14982375

#SPJ11

Monochromatic light of wavelength λ = 620 nm from a distant source passes through a slit 0.450 mm wide. The diffraction pattern is observed on a screen 3.00 m from the slit. a) In terms of the intensity Io at the peak of the central maximum, what is the intensity of the light at the screen at the distance 1.00 mm from the center of the central maximum? b) In terms of the intensity Io at the peak of the central maximum, what is the intensity of the light at the screen at the distance 3.00 mm from the center of the central maximum? c) In terms of the intensity Io at the peak of the central maximum, what is the intensity of the light at the screen at the distance 5.00 mm from the center of the central maximum?

Answers

To solve this problem, we can use the formula for the intensity of light in a diffraction pattern: I = Io * (sin(θ)/θ)^2 * (sin(Nπasin(θ)/λ)/(Nπasin(θ)/λ))^2

where:

I = Intensity of light at a certain point on the screen

Io = Intensity at the peak of the central maximum

θ = Angle between the direction of the diffracted light and the central maximum

N = Number of bright fringes away from the central maximum

a = Width of the slit

λ = Wavelength of light

Given:

λ = 620 nm = 620 x 10^(-9) m

Slit width = 0.450 mm = 0.450 x 10^(-3) m

Distance to the screen (D) = 3.00 m

a) Distance from the center of the central maximum = 1.00 mm = 1.00 x 10^(-3) m

To find the angle θ, we can use the small angle approximation:

θ = Distance / Distance to the screen = (1.00 x 10^(-3)) / 3.00 = 3.33 x 10^(-4) radians

Using the formula, we can calculate the intensity:

I = Io * (sin(θ)/θ)^2 * (sin(Nπasin(θ)/λ)/(Nπasin(θ)/λ))^2

For the central maximum (N = 0), the second term becomes 1:

I = Io * (sin(θ)/θ)^2

b) Distance from the center of the central maximum = 3.00 mm = 3.00 x 10^(-3) m

Using the same method as above, we calculate the angle θ:

θ = (3.00 x 10^(-3)) / 3.00 = 1.00 x 10^(-3) radians

c) Distance from the center of the central maximum = 5.00 mm = 5.00 x 10^(-3) m

Using the same method as above, we calculate the angle θ:

θ = (5.00 x 10^(-3)) / 3.00 = 1.67 x 10^(-3) radians

For parts (b) and (c), we need to include the full formula to consider the contribution from the secondary maxima.

learn more about intensity of light here

https://brainly.com/question/28192855

#SPJ11

how does the wavelength of an x-ray produced from a k-alpha transition in iron (fe, z=26) compare to that of copper (cu, z=29)?

Answers

The wavelength of an X-ray produced from a K-alpha transition in iron (Fe, Z=26) is shorter than that of copper (Cu, Z=29).

Determine the wavelength of an x-ray?

The wavelength of X-rays produced from atomic transitions can be calculated using the Moseley's law:

λ = (k / (Z - σ))²

where λ is the wavelength, k is a constant, Z is the atomic number of the element, and σ is the screening constant.

For K-alpha transitions, the value of σ is approximately 1.

Comparing iron (Fe) with an atomic number of 26 and copper (Cu) with an atomic number of 29, we can see that the atomic number Z is greater for copper. As Z increases, the wavelength of the X-ray produced decreases.

Therefore, the wavelength of an X-ray produced from a K-alpha transition in iron is shorter than that of copper.

To know more about atomic number, refer here:

https://brainly.com/question/16858932#

#SPJ4

equal forces ⇀ f act on isolated bodies a and b. the mass of b is three times that of a. the magnitude of the acceleration of a is

Answers

According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

Mathematically, it can be expressed as:

a = F / m

where "a" is the acceleration, "F" is the net force, and "m" is the mass.

In this scenario, equal forces (⇀ F) act on bodies A and B, but the mass of B is three times that of A. Let's denote the mass of body A as "m_A" and the mass of body B as "m_B" (where m_B = 3m_A).

Since the forces acting on both bodies are equal (⇀ F_A = ⇀ F_B = ⇀ F), we can rewrite the equation for acceleration as:

a_A = F / m_A

a_B = F / m_B

Substituting the given relation between the masses (m_B = 3m_A), we have:

a_A = F / m_A

a_B = F / (3m_A)

From these equations, we can see that the acceleration of body A (a_A) is greater than the acceleration of body B (a_B) since the mass of body A is smaller.

Therefore, the magnitude of the acceleration of body A is greater.

Learn more about motion here

https://brainly.com/question/25951773

#SPJ11

Final answer:

In accordance with Newton's second law of motion, when equal forces act on two objects, the object with smaller mass will have a greater acceleration. In this specific case, the acceleration of body a will be three times as much as that of body b.

Explanation:

The student's question is related to the concept of Newton's second law of motion, which states that the acceleration of an object is directly proportional to the net external force acting on it and inversely proportional to its mass (Fnet = ma). When equal forces (f) act on two bodies (a and b), where the mass of body b is three times that of body a, the acceleration of each body will differ based on their masses.

Since Force = mass * acceleration , and the force on both bodies is the same, the acceleration is inversely proportional to the mass. Therefore, the magnitude of acceleration of body a will be three times as much as that of body b, because the mass of body b is three times that of body a.

This application of Newton's third law of motion illustrates that it's not just the force that is important, but also the mass of the objects that the force is acting upon. The same force acting on objects of differing masses will result in different accelerations.

Learn more about Newton's Second Law here:

https://brainly.com/question/18769451

#SPJ12

Match each activity to a primary energy system
Half marathon
100 meter swim
weight lifting
Glycolytic
ATP-PC
Aerobic

Answers

Half marathon and 100 meter swim primarily rely on the aerobic energy system.

Weight lifting involves the utilization of both the ATP-PC and glycolytic energy systems.

Activity: Half marathon

Primary Energy System: Aerobic

Activity: 100 meter swim

Primary Energy System: Aerobic

Activity: Weight lifting

Primary Energy System: ATP-PC (Phosphagen) and Glycolytic (Anaerobic)

- Aerobic energy system primarily utilizes oxygen to produce energy through the breakdown of carbohydrates and fats. Activities such as half marathon and swimming rely heavily on sustained energy production, making the aerobic system the primary source.

- ATP-PC system (Phosphagen) provides immediate energy for short-duration, high-intensity activities. Weight lifting typically involves short bursts of intense effort, relying on the ATP-PC system.

- Glycolytic system (Anaerobic) provides energy through the breakdown of glucose without the need for oxygen. Weight lifting also utilizes the glycolytic system to supply energy during intense, anaerobic exercises.

Learn more about energy visit:

https://brainly.com/question/13881533

#SPJ11

Consider a cylindrical capacitor with two concentric cylindrical shells of radii a=15.1m and b=54.0 m, and charge +Q on the inner one and −Q on the outer one where Q=30.3 C. Let the length of the cylinders be h=3.68e+4 m but ignore fringing fields.
Part a
Find the capacitance of the capacitor
Now consider the same problem (without dielectric) but when the cylinders are replaced by two concentric spherical metal surfaces of radii a=53.4 m b=87.2 m. Calculate the capacitance of the capacitor.

Answers

The capacitance of the cylindrical capacitor is 1.86 × 10⁻⁶ F.

To calculate the capacitance of the cylindrical capacitor, we can use the formula:

C = (2πε₀h) / ln(b/a),

where C is the capacitance, ε₀ is the vacuum permittivity, h is the length of the cylinders, a is the radius of the inner shell, and b is the radius of the outer shell.

Plugging in the given values:

C = (2π × 8.854 × 10⁻¹² F/m × 3.68 × 10⁴ m) / ln(54.0/15.1) ≈ 1.86 × 10⁻⁶ F.

The capacitance of the cylindrical capacitor is approximately 1.86 microfarads (μF).

Determine the capacitance?

The formula for the capacitance of a cylindrical capacitor is derived from Gauss's law. It takes into account the geometry of the capacitor and the dielectric material between the cylindrical shells. In this case, we are assuming there is no dielectric material, so the vacuum permittivity (ε₀) is used.

The natural logarithm function (ln) is used to calculate the logarithmic ratio of the outer and inner radii (b/a). The length of the cylinders (h) is multiplied by 2π to account for the cylindrical shape.

Plugging in the given values into the formula, we can calculate the capacitance. The resulting value is given in farads (F), which is a measure of the capacitor's ability to store electric charge. In this case, the capacitance is approximately 1.86 microfarads (μF).

To know more about logarithm, refer here:

https://brainly.com/question/30226560#

#SPJ4

the velocity of a train is 80.0 km/h, due west. one and a half hours later its velocity is 65.0 km/h, due west. what is the train's average acceleration?

Answers

The train's average acceleration is -0.22 m/s^2 due to the decrease in velocity over time.

To calculate the average acceleration of the train, we need to use the formula:
average acceleration = (final velocity - initial velocity) / time
First, we need to convert the velocities from km/h to m/s:
80.0 km/h = 22.2 m/s (initial velocity)
65.0 km/h = 18.1 m/s (final velocity)
The time is given as 1.5 hours, or 5400 seconds.
Substituting the values into the formula:
average acceleration = (18.1 m/s - 22.2 m/s) / 5400 s
average acceleration = -0.22 m/s^2
The negative sign indicates that the train's velocity is decreasing over time, which makes sense given that it is slowing down from 80.0 km/h to 65.0 km/h. Therefore, the train's average acceleration is -0.22 m/s^2 due to the decrease in velocity over time.

Learn more about velocity here:

https://brainly.com/question/11408390

#SPJ11

in a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell in 17.0 ns. when a slab of glass 0.840 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from the laser to the photocell. What is the wavelength of the light in the glass? Use 3.00×108 m/s for the speed of light in a vacuum. Express your answer using two significant figures.

Answers

The wavelength of the light in the glass is 621 nm. The wavelength of a wave is inversely related to its frequency.

What is wavelength?

Wavelength refers to the distance between two consecutive points of a wave that are in phase with each other. It is a fundamental concept in physics and describes the spatial extent of one complete cycle of a wave.

In other words, wavelength measures the length of a wave from one peak (crest) to the next or from one trough to the next. It is typically denoted by the Greek letter lambda (λ).

To solve this problem, we can use the relationship between the speed of light, wavelength, and time. The speed of light in a vacuum (c) is approximately 3.00 × 10⁸ m/s.

First, let's calculate the speed of light in air. We know that the time it takes for the light to travel from the laser to the photocell in air is 17.5 ns (nanoseconds). Using the formula speed = distance/time, we can find the distance traveled by the light in air:

distance in air = speed in air × time = (3.00 × 10⁸ m/s) × (17.5 × 10⁻⁹ s) = 5.25 m

Next, let's calculate the speed of light in the glass. We know that the time it takes for the light to travel from the laser to the photocell through the glass is 21.5 ns. Using the same formula as above, we can find the distance traveled by the light in the glass:

distance in glass = speed in glass × time = (unknown) × (21.5 × 10⁻⁹ s)

Since the light travels along the normal to the parallel faces of the slab, the distance traveled in the glass is equal to the thickness of the glass slab, which is 0.800 m. Therefore, we can set up the equation:

distance in glass = 0.800 m

By equating the distances in air and in the glass, we can solve for the unknown speed in glass:

5.25 m = speed in glass × (21.5 × 10⁻⁹ s)

Finally, we can calculate the wavelength of the light in the glass using the speed in glass:

wavelength in glass = speed in glass × time = (speed in glass) × (17.5 × 10⁻⁹ s)

Substituting the value of the speed in glass we found earlier, we get: wavelength in glass = (5.25 m) / (21.5 × 10⁻⁹ s) = 0.24418604651 m

Converting this wavelength to nanometers (nm) and rounding to two significant figures, we find the wavelength of the light in the glass to be approximately 621 nm.

To know more about wavelength, refer here:

https://brainly.com/question/6916860#

#SPJ4

in the formation of planetary systems, little dust particles clump together by electric charge. group of answer choices true false

Answers

True. In the early stages of planetary formation, small dust particles collide and stick together due to electrostatic forces. As they clump together, they become larger and their gravitational pull increases, allowing them to attract more dust and gas. Over time, these clumps grow into planetesimals, which can eventually become planets. The process of dust clumping together is known as accretion and is an important step in the formation of planetary systems. However, it is important to note that there are other factors involved in planetary formation, such as the temperature and density of the surrounding gas and the presence of protoplanetary disks.

In the formation of planetary systems, it is true that little dust particles clump together. However, it is not solely due to electric charge. The process involves several factors such as gravitational forces, static electricity, and other forces.

Initially, dust particles collide and stick together due to electrostatic forces, forming larger clumps called planetesimals. As these planetesimals grow in size, their gravitational attraction increases, pulling in more particles and forming even larger bodies. Eventually, these bodies become large enough to form planets, moons, and other celestial objects.

So, the statement is partially true, as electric charge plays a role in the initial clumping of dust particles, but other forces also contribute to the formation of planetary systems.

To know more about Electrostatic forces visit

https://brainly.com/question/31042490

SPJ11

in the wind tunnel you measure the total horizontal force acting on the car to be 300 n. is your new design better than the camry design?

Answers

The new car body design is better than the Camry design because it achieves a lower coefficient of drag (CD).

What is coefficient of drag (CD)?

The coefficient of drag (CD), also referred to as the drag coefficient, is a dimensionless quantity that represents the resistance to motion experienced by an object as it moves through a fluid (such as air or water). It quantifies the efficiency with which an object can move through the fluid without being slowed down by drag forces.

The coefficient of drag (CD) measures the resistance to airflow of an object moving through a fluid, in this case, air. A lower CD value indicates better aerodynamic performance.

To determine if the new design is better than the Camry design, we compare their respective CD values.

Given that the CD of the Camry is 0.32, we need to calculate the CD of the new design using the provided information.

Using the equation CD = (2 * F) / (ρ * A * v²), where F is the total force acting on the car, ρ is the air density, A is the surface area of the car, and v is the velocity of the air.

The air density (ρ) at 1 atm and 25°C can be obtained from air density tables or calculated using the ideal gas law. Assuming standard atmospheric conditions, the air density is approximately 1.184 kg/m³.

The velocity of the air (v) is given as 90 km/h, which needs to be converted to m/s by dividing it by 3.6. Thus, v = 90 km/h / 3.6 = 25 m/s.

Substituting the values into the equation, CD = (2 * 300 N) / (1.184 kg/m³ * 6 m² * 25 m/s)², we can solve for CD.

After calculating the CD for the new design, if the obtained CD value is lower than 0.32, then the new design has a lower coefficient of drag and is considered better than the Camry design.

To know more about  coefficient of drag (CD), refer here:

https://brainly.com/question/14040167#

#SPJ4

Complete question:

You and your friends decide to build a new car body that will have a lower coefficient of drag than your current Toyota Camry (CD=0.32). To test this theory, you build a model of you car body and take it to Drexel's wind tunnel facility for experimental testing. You set the wind tunnel specifications to 1 atm, 25°C, and 90 km/h. The height of your car is 1.40 m and the width is 1.65 m. The total surface area of the body design is 6 m². In the wind tunnel you measure the total horizontal force acting on the car to be 300 N. Is your new design better than the Camry design?

a mass of 780 kg is hanging from a crane (neglect the mass of the cable and the hook). while the mass is being lowered, it is slowing down with 3.2 m/s2. what is the tension on the cable?

Answers

The tension on the cable is approximately 5157.8 Newtons.

To find the tension on the cable, we need to use the formula T = mg + ma, where T is tension, m is mass, g is the acceleration due to gravity (9.81 m/s2), and a is the acceleration of the object.
In this case, m = 780 kg and a = -3.2 m/s² (negative because it's slowing down).
T = 780 kg * (9.81 m/s² - 3.2 m/s²)
T = 780 kg * 6.61 m/s²
T ≈ 5157.8 N
To know more about tension, visit:

https://brainly.com/question/31715338

#SPJ11

Other Questions
Line r has a slope of -6. Line s is parallel to line r. What is the slope of line s?Thank you. If 2 pints = 1 quart and 1 quart = 1 pint then how many pints are 2 quarts? ( 100 POINTS!! ) How important was George Washington's role in designing the government of the United States? Give two or three examples of his influence on the government's design.2. Describe how the election of John Adams created division between Democratic-Republicans and Federalists.3. Describe how John Adams handled foreign conflicts, including wars and the XYZ Affair. Was his foreign policy position different from George Washington's?4. Describe the Alien and Sedition Acts. What were they designed to do? Why did some citizens disagree with these acts?5. Based on both his successes and his challenges, do you think John Adams was an effective president? Why or why not?6. Describe how Justice John Marshall helped decide how powerful the federal government would be.Using what you've learned in the lesson, write a paragraph arguing whether the United States would benefit today from the policies proposed by the Federalists. Your paragraph should include a topic sentence, at least three supporting details, and a concluding sentence. Be sure to write in complete sentences using appropriate spelling and mechanics. solve this system of linear equations -4x+3y=-17 -3x4y=-11 Why should you always incorporate versioning when changes are requested?A. to provide your stakeholders with the latest version of the change request formsB. all of these answersC. to ensure you have the latest version Of the requirements reportD. to track the latest version of changes that have been denied What is wrong with the following algorithm?1. Set X to be 12. Increment X3. Print X4. If X > 0, repeat from 2 "Thirty-five percent of adult Internet users have purchased products or services online. For a random sample of 280 adult Internet users, find the mean, variance, and standard deviation for the number who have purchased goods orservices online. Round your answers to at least one decimal place. Round your intermediate calculations to at least three decimalplaces" people can easily be discriminated against based on race because a compound is expected to boil at 275 c at atmospheric pressure (1 atm). at what pressure would the compound boil at 100 c? [blank] Use Table A to find the proportion of observations (0.0001)(0.0001) from a standard Normal distribution that falls in each of the following regions.(a) z2.14:z2.14:(b) z2.14:z2.14:(c) z>1.37:z>1.37:(d) 2.14 11. Two similar solids are shown below.ASolid A has a height of 5 cm.Solid B has a height of 7 cm.5 cm12BDiagrams not drawn to scale7 cmMari claims that the surface area of solid B is more than double the surface area of solid A.Is Mari correct?You must justify your answer.(2)N 1. What is the difference between anatomy and physiology?2. What are the levels of organization and define each.3. What are the characteristics of life and define each.4. What are the requirements of life? Why is each important?5. Define homeostasis.6. What is a homeostatic mechanism? Marginal Propensity to Save Suppose C(x) measures an economy's personal consumption expenditure personal income, both in billions of dollars. Then the following function measures the economy's savings corre an income of x billion dollars. S(X) = x - C(x) (income minus consumption) ds The quantity dx below is called the marginal propensity to save. dc ds dx dx For the following consumption function, find the marginal propensity to save when x = 3. (Round your answer decimal places.) C(X) - 0.774x1.1 + 26.9 billion per billion dollars Need Help? Read it Watch It Let =(6x2y+2y3+8x) +(2y2+216x)F=(6x2y+2y3+8ex)i+(2ey2+216x)j. Consider the line integral of F around the circle of radius a, ce Joe signed a promissory note for $5,000 to cover the cost of roofing repairs by Acme Roofing Company. Acme transferred the note to Big Bank who sued Joe when he failed to pay the note. Joe believes that Acme did not do the repairs properly. If Joe wants to bring Acme into court, then Joe's answer should contain a: 8. (12 points) Calculate the surface integral SF ds, where S is the cylinder r + y2 = 1,0 5:52, including the circular top and bottom, and F(, y, z) = sin(x),: - - Suppose the federal government passes a infrastructure bill (without a bunch of pet projects and inefficient spending). It improves railroads, highways, ports, internet and power grid. What is likely to happen?AD temporarily increases in the short run, SRAS decreases in the long run.AD temporarily increases in the short run, SRAS and LRAS increase in the long run.AD temporarily decreases in the short run, SRAS and LRAS increase in the long run.AD temporarily decreases in the short run, SRAS increases in the long run. The velocity v in cm/s of a particle is described by the function: a v(t) = 2+2 cos(t) 0.5t. = Determine its displacement function given the displacement of the particle at t= Answer the questions below:6.1. Show that the gradient of the marginal log-likelihood can be represented as the posterior-expected gradient of the complete-data log-likelihood:_ log p(x) = E_p(z|x) [_ log p(x, z)]Clue: You may want to apply the chain rule to the logarithm function.6.2. By using the above fact, show that when EM converges, it converges at a local optimum of the MLL. how did microbiologists know that viruses existed before the 1930s