The closest choice to the actual number of ways to choose 52 different winners out of 52 contestants is 16,497,400,
To solve this problem, we can use the formula for permutations, which is:
nPr = n! / (n - r)!
where n is the total number of objects (in this case, 52), and r is the number of objects we are choosing (in this case, the number of prizes, which is also 52).
Since no one can win more than one prize, we need to choose 52 different winners for the prizes. Therefore, the number of ways to do this is:
52P52 = 52! / (52 - 52)! = 52!
Using a calculator or computer program, we can find that 52! is approximately equal to 8.0658 × 10^67.
Therefore, the answer is 16,497,400, which is the closest choice to the actual number of ways to choose 52 different winners out of 52 contestants.
To learn more about permutations . refer the below link
https://brainly.com/question/1216161
#SPJ4
Write an inequality relating the given side lengths. If there is not enough information to reach a conclusion write “no conclusion”
(25,26,27,28)
The inequality relating the figures are
25 XZ > AC
26. DF < FD
27. 38 > x > 11
28. 37/3 > x > 7/3
How to find xIn the figure, the angles are related from the concept that one angle in a triangle must be greater than zero and less than 180.
In addition, when other dimensions are equal the side having greater length will have greater angle facing it.
27. since side 18 > side 12 we have that
5x - 10 > 45
5x > 45 + 10
5x > 55
x > 11
each angle must be less than 180
Also, 5x - 10 < 180
5x < 180 + 10
5x < 190
x < 38
The range of values of x is 38 > x > 11
28. since side 9 > side 6
30 > 3x - 7
30 + 7 > 3x
37 > x
x < 37/3
each angle must be greater than 0
3x - 7 < 0
3x > 7
x > 7/3
The range of values of x is 37/3 > x > 7/3
Learn more about inequality at
https://brainly.com/question/25275758
#SPJ1
past data shows that the standard deviation of apartments for rent in the area is $200. suppose we want a 98% confidence interval with margin of error of 50. what sample size do we need?
A sample size of 87 is required to obtain a 98% confidence interval with a margin of error of 50.
How to calculate sample size?To calculate the sample size required for a 98% confidence interval with a margin of error of 50, we need to use the following formula:
n = [Z*(σ/ME)]^2
where:
n = the sample size needed
Z = the Z-score for the desired confidence level (98% or 2.33)
σ = the standard deviation of apartments for rent in the area ($200)
ME = the margin of error ($50)
Plugging in the given values, we get:
n = [2.33*(200/50)]^2
n = [9.32]^2
n ≈ 86.7
Since we cannot have a fractional sample size, we round up to the nearest whole number to get the final answer.
Therefore, a sample size of 87 is required to obtain a 98% confidence interval with a margin of error of 50, given that the standard deviation of apartments for rent in the area is $200.
Learn more about sample size
brainly.com/question/30885988
#SPJ11
I need help please I will give brainliest to the best answer...
The value of x in the intersecting chords that extend outside circle is 5
Calculating the value of xFrom the question, we have the following parameters that can be used in our computation:
intersecting chords that extend outside circle
Using the theorem of intersecting chords, we have
4 * (x + 6 + 4) = 6 * (x - 1 + 6)
Evaluate the like terms
So, we have
4 * (x + 10) = 6 * (x + 5)
Using a graphing tool, we have
x = 5
Hence. the value of x is 5
Read more about intersecting chords at
https://brainly.com/question/13950364
#SPJ1
Using the graph, determine the coordinates of the x-intercepts of the parabola.
Answer:
x = -5, x = 1
As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).
Step-by-step explanation:
The x-intercepts are the x-values of the points at which the curve crosses the x-axis, so when y = 0.
From inspection of the given graph, we can see that the parabola crosses the x-axis at x = -5 and x = 1.
Therefore, the x-intercepts of the parabola are:
x = -5x = 1As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).
Solve for x to make A||B.
A = x + 12
B = x + 48
X = [?]
Answer:
Step-by-step explanation:= x+48=180 ( linier pair )
= x=180-48
= x=132
= x+12=180 (liner pair)
= x=180-12
= x=168
erin is playing darts at the adventure arcade. she scores a bullseye 15% of the time, and she is about to throw 5 darts. how likely is it that she will get at least one bullseye?
the likelihood of Erin getting at least one bullseye in 5 throws is 0.5563 or 55.63%.
To calculate the likelihood of Erin getting at least one bullseye, we need to first calculate the probability of her not getting a bullseye in a single throw. Since she scores a bullseye 15% of the time, the probability of her not getting a bullseye in a single throw is 85% (100% - 15%).
Using the probability of not getting a bullseye in a single throw, we can use the following formula to calculate the probability of not getting a bullseye in all 5 throws:
0.85 x 0.85 x 0.85 x 0.85 x 0.85 = 0.4437
Therefore, the probability of Erin not getting a bullseye in all 5 throws is 0.4437 or 44.37%.
To calculate the probability of Erin getting at least one bullseye in 5 throws, we can subtract the probability of her not getting a bullseye in all 5 throws from 1:
1 - 0.4437 = 0.5563
Therefore, the likelihood of Erin getting at least one bullseye in 5 throws is 0.5563 or 55.63%.
learn more about probability
https://brainly.com/question/30034780
#SPJ11
The probability that Erin will get at least one bullseye in her 5 throws at the adventure arcade is approximately 55.63%.
To find the probability that she will get at least one bullseye in 5 throws, we can use the complementary probability.
This means we will first find the probability of her not getting a bullseye in all 5 throws, and then subtract that from 1.
Find the probability of not getting a bullseye (1 - bullseye probability)
1 - 0.15 = 0.85
Calculate the probability of not getting a bullseye in all 5 throws
0.85^5 ≈ 0.4437
Find the complementary probability (probability of at least one bullseye)
1 - 0.4437 ≈ 0.5563
So, the probability that Erin will get at least one bullseye in her 5 throws at the adventure arcade is approximately 55.63%.
for such more question on probability
https://brainly.com/question/13604758
#SPJ11
Help please? I just need an answer. A clear explanation earns brainliest.
the simplified form of expression is: -(x² + 2x - 2)/((x+2)*(x+4))
what is expression ?
In mathematics, an expression is a combination of numbers, variables, operators, and/or functions that represents a mathematical quantity or relationship. Expressions can be simple or complex
In the given question,
To evaluate the expression 1/(x+2) - (x+1)/(x+4), we need to find a common denominator for the two terms. The least common multiple of (x+2) and (x+4) is (x+2)(x+4).
So, we can rewrite the expression as:
(1*(x+4) - (x+1)(x+2))/((x+2)(x+4))
Expanding the brackets, we get:
(x+4 - x² - 3x - 2)/((x+2)*(x+4))
Simplifying the numerator, we get:
(-x² - 2x + 2)/((x+2)*(x+4))
Therefore, the simplified expression is:
-(x² + 2x - 2)/((x+2)*(x+4))
To know more about Expressions , visit:
https://brainly.com/question/14083225
#SPJ1
You roll a six sided die 30 times. A 5 is rolled 8 times. What is the theoretical probability of rolling a 5? What is the experimental probability of rolling a 5?
The theoretical and experimental probability of rolling a 5 are 1/6 and 4/15 respectively.
How do we derive the probability?We will calculate the theoretical probability by substituting 30 for the number of favorable outcomes as the die is rolled 30 times with one option each for 30 rolls and 180 for total number of outcomes in theoretical probability formula.
P(Theoretical probability of rolling a 5) = 30/180
P(Theoretical probability of rolling a 5) = 1/6.
The experimental probability is calculated by substituting 8 for the number of time the event occurs and 30 for the total number of trials.
P(Experimental probability of rolling a 5)= 8/30
P(Experimental probability of rolling a 5) =4/15
Read more about probability
brainly.com/question/24756209
#SPJ1
9) Given f-¹(x)=-3x+2, write an equation
that represents f(x).
as you already know, to get the inverse of any expression we start off by doing a quick switcheroo on the variables and then solving for "y", let's do so for this inverse, since finding the inverse of the inverse, will give us the original function :)
[tex]f^{-1}(x)=-3x+2\implies y~~ = ~~-3x+2\hspace{5em}\stackrel{\textit{quick switcheroo}}{x~~ = ~~-3y+2} \\\\\\ x-2=-3y\implies \cfrac{x-2}{-3}=y\implies \cfrac{2-x}{3}=y=f(x)[/tex]
dora drove east at a constant rate of 75 kph. one hour later, tim started driving on the same road at a constant rate of 90 kph. for how long was tim driving, before he caught up to dora? a. 5 hours b. 4 hours c. 3 hours d. 2 hours
Tim was driving for 5 hours before he caught up to Dora.
The answer is (a) 5 hours.
To solve this problem, we can use the formula:
distance = rate × time
Let's denote the time Tim drove as t hours.
Since Dora started driving one hour earlier, her driving time would be (t + 1) hours.
Dora's distance: 75 kph × (t + 1)
Tim's distance: 90 kph × t
Since Tim catches up to Dora, their distances will be equal:
75(t + 1) = 90t
Now we can solve for t:
75t + 75 = 90t
75 = 15t
t = 5.
The answer is (a) 5 hours.
For similar question on distances.
https://brainly.com/question/29657955
#SPJ11
true or false: a linear programming problem can have an optimal solution that is not a corner point. select one: true false
It is true that a linear programming problem can have an optimal solution that is not a corner point.
How given statement is true? Explain further?In linear programming, the optimal solution represents the point where the objective function is optimized while still satisfying all the constraints.
In some cases, the optimal solution may occur at a corner point of the feasible region, where two or more of the constraints intersect.
However, it is possible for the optimal solution to occur at a point that is not a corner point, but rather lies on an edge or a line segment of the feasible region.
This can occur when the objective function is parallel to one of the constraint lines or when there are redundant constraints that limit the feasible region.
Therefore, it is true that a linear programming problem can have an optimal solution that is not a corner point.
Learn more about linear programming.
brainly.com/question/15417573
#SPJ11
Which expressions are equivalent to 27^4/3?
Select the three correct answers.
A. 4^3
B. (27^1/3)^4
C. 3^1/4
D. 81
D) 81 is equivalent to 27^(4/3).
The expression 27^4/3 can be simplified using the rule that (a^m)^n = a^(m*n). Therefore, we can write,
27^(4/3) = (3^3)^(4/3)
Using the power of a power rule, we can simplify further,
(3^3)^(4/3) = 3^(3*4/3)
Simplifying the exponent, we get,
3^(4)
To check the other answer choices,
A. 4^3 is not equivalent to 27^4/3.
B. (27^1/3)^4 is equivalent to 27^(4/3), which we already simplified to 3^4. Therefore, this expression is also equivalent to 3^4.
C. 3^1/4 is not equivalent to 27^4/3.
D. 81 is equivalent to 3^(4).
Therefore, the expression 27^4/3 is equivalent to 3^4, which is answer choice D) 81.
To learn more about equivalent here:
https://brainly.com/question/31532746
#SPJ4
Write the equation for the following graph.
Step-by-step explanation:
the equation for the following graph os (-3,-5) & (1,1)
Madison made the following table to record the height of each person in her family. About how much taller is her mom than Jade? Be sure to round to the nearest half or whole.
{1}{2} foot
1, 1{2} feet
0 feet
1 foot
As per the data mentioned in the table, Jade's mom is 0.7 ft or 1 ft taller than jade.
Describe mixed fractions.Mixed numbers represent whole numbers and proper fractions together. Usually represents a number between any two integers. Hybrid numbers are made by combining three parts:
An integer, a numerator, and a denominator. The numerator and denominator are part of the correct fraction giving the mixed number.
Height of jade's mom = 5⁵/₈ ft
Jade's height = 4⁵/₆
The difference in their heights is:
= (45/8) - (29/6)
= (270 - 232)/48
= 38/48
= 0.7 ft
0.7 ft ≈ 1 ft
To know more about mixed fractions, visit:
https://brainly.com/question/28999351
#SPJ1
Find the points on the surface z2 = xy +16 closest to the origin. The points on the surface closest to the origin are (Type an ordered triple. Use a comma to separate answers as needed. )
The points on the surface z² = xy + 16 closest to the origin are: (-4,4,0) and (4, -4, 0)
We know that the distance between an arbitrary point on the surface and the origin is d(x, y, z) = √(x² + y² + z²)
Using Lagrange multipliers,
L(x, y, z, λ) = x² + y² + z² + λ(z² - xy - 16)
We have partial derivatives.
[tex]L_x[/tex] = 2x - λy
[tex]L_y[/tex] = 2y - λx
[tex]L_z[/tex] = 2z + 2zλ
[tex]L_\lambda[/tex] = z² - xy - 16
Now we set each partial derivative to zero to find critical points.
[tex]L_x[/tex] = 0
2x - λy = 0
[tex]L_y[/tex] = 0
2y - λx = 0
After solving above equations simultaneously we get (x + y)(x - y) = 0
i.e., x = -y OR x = y
[tex]L_z[/tex] = 0
2z + 2zλ = 0
z = 0 OR λ = 0
Consider [tex]L_\lambda[/tex] = 0
z² - xy - 16 = 0
-xy = 16 ............(as z = 0)
when x = y then -y² = 16 which is not true.
So, consider x = -y
-(-y)y = 16
y² = 16
y = ±4
when y = 4 then we get x = -4
and when y = -4 then we get x = 4
Therefore, the closest points are:(-4,4,0) and (4, -4, 0)
Learn more about the Lagrange multipliers here:
https://brainly.com/question/30776684
#SPJ4
19.
Solve the problem.
2
Find the critical value XR corresponding to a sample size of 5 and a confidence
level of 98%.
(1 point)
O11.143
00.297
13.277
00.484
The critical value of the chi-square distribution corresponding to a sample size of 5 and a confidence level of 98% is given as follows:
0.297 and 13.277.
How to obtain the critical value?To obtain a critical value, we need three parameters, given as follows:
Distribution.Significance level.Degrees of freedom.Then, with the parameters, the critical value is found using a calculator.
The parameters for this problem are given as follows:
Chi-square distribution.1 - 0.98 = 0.02 significance level.5 - 1 = 4 degrees of freedom.Using a chi-square distribution calculator, the critical values are given as follows:
0.297 and 13.277.
More can be learned about the chi-square distribution at https://brainly.com/question/4543358
#SPJ1
find the average rate of change of the car's position on the interval . include units on your answer.
The average rate of change of the car's position on the interval is ∆P/∆t.
To find the average rate of change of the car's position on the interval, follow these steps:
Identify the interval: First, determine the specific interval for which you need to find the average rate of change (e.g.,
between times t1 and t2).
Calculate the change in position:
Determine the car's position at both the beginning and end of the interval (e.g., positions P1 and P2).
Then, subtract the initial position (P1) from the final position (P2) to find the change in position (∆P).
Calculate the change in time: Subtract the initial time (t1) from the final time (t2) to find the change in time (∆t).
Calculate the average rate of change: Divide the change in position (∆P) by the change in time (∆t) to find the average
rate of change.
The average rate of change of the car's position on the interval is ∆P/∆t. Include units in your answer (e.g., meters per
second or miles per hour) to indicate the car's rate of change in position.
for such more question on average
https://brainly.com/question/20118982
#SPJ11
A bottle of water that is 80°F is placed in a cooler full of ice. The temperature of the water decreases by 0. 5°F every minute. What is the temperature of the water, in degrees Fahrenheit, after 5 1/2
minutes? Express your answer as a decimal
After 5 and a half minutes, the temperature of the water will be 77°F.
In this scenario, we are given that the initial temperature of the water is 80°F. We also know that the temperature of the water decreases by 0.5°F every minute. We want to find out what the temperature of the water will be after 5 and a half minutes.
To solve this problem, we need to use a bit of math. We know that the temperature of the water is decreasing by 0.5°F every minute. So after 1 minute, the temperature of the water will be 80°F - 0.5°F = 79.5°F. After 2 minutes, the temperature will be 79.5°F - 0.5°F = 79°F. We can continue this pattern to find the temperature after 5 and a half minutes.
After 5 minutes, the temperature of the water will be 80°F - (0.5°F x 5) = 77.5°F. And after another half minute (or 0.5 minutes), the temperature will decrease by another 0.5°F, so the temperature will be 77.5°F - 0.5°F = 77°F.
To know more about temperature here
https://brainly.com/question/11464844
#SPJ4
The right triangle shown is enlarged such that each side is multiplied by the value of the hypotenuse, 3y. Find the expression that represents the perimeter of the enlarged triangle. TRIANGLE AND ANSWER CHOICES BELOW!
Answer:
c.
Step-by-step explanation:
The original triangle has two sides with length 4x each, and the hypotenuse has length 3y.
After the enlargement, each of the sides with length 4x becomes 3y × 4x = 12xy, and the hypotenuse becomes 3y × 3y = 9y^2.
Therefore, the perimeter of the enlarged triangle is the sum of the lengths of its three sides:
12xy + 12xy + 9y^2 = 24xy + 9y^2 = 9y^2 + 24xy
So the answer is (C) 9y^2 + 24xy.
Slope-intercept (0, -2) , (9,1)
a p-value a. can be positive or negative. b. is a probability. c. can be smaller than 0 but no larger than 1. d. can be larger than 1 but no smaller than 0. e. can only range in value from -1 to 1.
A p-value is a probability.
A p-value is the probability of obtaining a test statistic as extreme or more extreme.
The observed value, assuming the null hypothesis is true.
It ranges in value from 0 to 1 and represents the strength of evidence against the null hypothesis.
A p-value cannot be negative, as it is a probability and probabilities are always between 0 and 1.
A p-value also cannot be larger than 1, as it represents a probability.
A probability cannot exceed 1.
Finally, a p-value cannot be smaller than 0, as it represents a probability.
A probability cannot be negative.
the correct option is b. is a probability.
For similar questions on P-Value
https://brainly.com/question/13786078
#SPJ11
Compare the numbers using <, >, or =. 0. 78 ___ 0. 708 < > =
For the given numbers, 78 < 0. 708
To compare two numbers, we need to look at their values and determine which one is larger or smaller. In this case, we have 78 and 0.708. We can start by comparing their whole number parts, which are 78 and 0, respectively. Since 78 is greater than 0, we know that 78 is a larger number.
But what about the decimal parts of these numbers? To compare them, we need to look at the place value of each digit. The first digit after the decimal point in 78 is 0, and the first digit after the decimal point in 0.708 is 7. Since 7 is greater than 0, we know that 0.708 is a larger number than 0.78 in terms of their decimal parts.
Now that we have compared the whole number parts and decimal parts separately, we can combine the results to determine the final comparison. Since 78 is larger than 0 and 0.708 is larger than 0.78 in terms of their decimal parts, we can conclude that:
78 < 0.708
We use the symbol "<" here because 78 is smaller than 0.708.
To know more about number here
https://brainly.com/question/17429689
#SPJ4
The solid below is dilated by a scale factor of 1/2. Find the volume of the
solid created upon dilation.
24
26
10
34
Answer: 4080
Step-by-step explanation:
First you have to find the area of the triangle. 24*10 = 240. 240/2 = 120. Then you multiply the area of the triangle and multiply it by 34. 120 * 34 = 4080. This means the answer is 4080
Round the number. Write the result as the product of a single digit and a power of 10.
4,241,933,200
Write the functions in standard form:
h(x)=2(x-3)²-9
h(x)=
p(x) = -5(x + 2)² + 15
p(x)=
Answer:
[tex]h(x)=2x^2-12x+9[/tex], [tex]p(x)=-5x^2-20x-5[/tex]
Step-by-step explanation:
To get to the standard form of a quadratic equation, we need to expand and simplify. Recall that standard form is written like so:
[tex]ax^2+bx+c[/tex]
Where a, b, and c are constants.
Let's expand and simplify h(x).
[tex]2(x-3)^2-9=\\2(x^2+9-6x)-9=\\2x^2+18-12x-9=\\2x^2+9-12x=\\2x^2-12x+9[/tex]
Thus, [tex]h(x)=2x^2-12x+9[/tex]
Let's do the same for p(x).
[tex]-5(x+2)^2+15=\\-5(x^2+4+4x)+15=\\-5x^2-20-20x+15=\\-5x^2-5-20x=\\-5x^2-20x-5[/tex]
Thus, [tex]p(x)=-5x^2-20x-5[/tex]
1. suppose we know that the average weight of coyotes is 14.5kg with a standard deviation of 4kg. what is the probability of trapping a coyote that is 17kg or larger?
The probability of trapping a coyote that is 17kg or larger, given an average weight of 14.5kg and a standard deviation of 4kg is approximately 0.2743 or 27.43%.
To solve the problem, we first need to standardize the weight of the coyote using the formula:
z = (x - μ) / σ
Where:
x = the weight of the coyote we want to find the probability for (17kg in this case)
μ = the population mean (14.5kg in this case)
σ = the population standard deviation (4kg in this case)
z = the standardized score
Substituting the given values in the formula, we get:
z = (17 - 14.5) / 4
z = 0.625
Next, we need to find the probability of getting a coyote weighing 17kg or more, which is equivalent to finding the area under the normal distribution curve to the right of z = 0.625. We can use a standard normal distribution table or a calculator to find this probability.
Using a calculator, we can use the cumulative distribution function (CDF) of the standard normal distribution. The CDF gives the area under the curve to the left of a specified z-score. Since we want the area to the right of z = 0.625, we can subtract the CDF from 1 to get the area to the right.
Using a standard normal distribution table or calculator, we find that the CDF for z = 0.625 is approximately 0.734. Therefore, the area to the right of z = 0.625 is 1 - 0.734 = 0.266 or 26.6%.
Thus, the probability of trapping a coyote that is 17kg or larger is approximately 0.266 or 26.6%.
For more questions like Probability click the link below:
https://brainly.com/question/30034780
#SPJ11
Using a standard normal distribution table or a calculator, the probability of trapping a coyote that is 17kg or larger is approximately 0.266 or 26.6%.
What exactly is a standard normal distribution?The standard normal distribution is a probability distribution that is used to calculate probabilities associated with a random variable that has a normal distribution with mean 0 and standard deviation 1. Any normally distributed random variable can be standardized by subtracting its mean and dividing by its standard deviation to obtain a new variable with mean 0 and standard deviation 1.
In this case, we are given that the weight of coyotes has a normal distribution with a mean of 14.5kg and a standard deviation of 4kg. We want to find the probability of trapping a coyote that is 17kg or larger.
To calculate this probability, we need to standardize the weight of a 17kg coyote using the formula:
z = (× - μ) / σ
where:
x is the value we want to standardize (in this case, 17kg),
μ is the mean of the distribution (14.5kg),
σ is the standard deviation of the distribution (4kg).
Substituting the values we have:
[tex]z =\frac{(17 - 14.5)}{4} = 0.625[/tex]
This value of 0.625 is the z-score for a coyote weighing 17kg. The z-score represents the number of standard deviations that a particular value is above or below the mean.
Next, we need to find the probability of a randomly selected coyote weighing 17kg or larger, which can be calculated using the standard normal distribution table or a calculator.
The standard normal distribution table gives the probability associated with a given z-score. However, since the table only gives probabilities for z-scores less than 0, we need to use the fact that the standard normal distribution is symmetric about the mean (0) to find the probability of a z-score greater than 0.625.
Specifically, we can use the property that:
P(Z > z) = 1 - P(Z < z)
where Z is a standard normal random variable and z is a z-score. This formula tells us that the probability of a z-score greater than a certain value is equal to 1 minus the probability of a z-score less than that value.
Using this formula, we can calculate:
P(Z > 0.625) = 1 - P(Z < 0.625)
We can look up the value of P(Z < 0.625) in a standard normal distribution table or calculate it using a calculator. For example, using a standard normal distribution table, we can find that P(Z < 0.625) = 0.734.
Substituting this value into the formula, we get:
P(Z > 0.625) = 1 - 0.734 = 0.266
Therefore, the probability of trapping a coyote that is 17kg or larger is approximately 0.266 or 26.6%.
Learn more about probability here:
https://brainly.com/question/13604758
#SPJ11
Kiran swims z laps in the pool. Clare swims 18 laps, which is 9/5
times as many laps as Kiran. How many laps did Kiran swim?
Equation:
Solution: z=
we use linear equation in one variable to solve the problem. Kiran swam 10 laps in the pool.
Let's represent the number of laps Kiran swam as "z".
We know that Clare swam 18 laps, which is 9/5 times as many laps as Kiran. We can represent this relationship with the following equation:
18 = (9/5)z
To solve for z, we can isolate it by multiplying both sides of the equation by the reciprocal of 9/5, which is 5/9:
18 * (5/9) = (9/5)z * (5/9)
10 = z
Therefore, Kiran swam 10 laps in the pool.
To know more about linear equation in one variable Visit:
https://brainly.com/question/31529190
#SPJ1
3. Technology required. Here are the data for the population f, in thousands, of a city d decades after 1960 along with the graph of the function given by f(d) = 25 - (1.19)ª. Elena thinks that shifting the graph off up by 50 will match the data. Han thinks that shifting the graph of f up by 60 and then right by 1 will match the data. a. What functions define Elena's and Han's graphs? b. Use graphing technology to graph Elena's and Han's proposed functions along with f. population (thousands) c. Which graph do you think fits the data better? Explain your reasoning.
The relationship between the functions are indicated in the attached graph. see further explanation below.
a. Elena's graph is obtained by shifting the original function f up by 50 units, so her function is g(d) = f(d) + 50 = 75 - (1.19)ª.
Han's graph is obtained by shifting the original function f up by 60 units and then to the right by 1 unit, so his function is h(d) = f(d - 1) + 60 = 85 - (1.19)^(a-1).
b. Using graphing technology, we can graph the three functions f, g, and h to compare how well they fit the given data. Here's an example graph:
graph of f, g, and h
c. From the graph, it appears that Han's function h fits the data better than Elena's function g. The graph of h seems to align more closely with the plotted data points than the other two functions. Moreover, the shift to the right and up of the graph of f seems to better capture the overall trend of the data, as it appears that the population increased and shifted slightly to the right over time.
Learn more about graph at:
https://brainly.com/question/17267403
#SPJ1
During a flood, there were 6000 acres of land under water. After 2 days, only 3375 acres of land were under water. Assume that the water receded at an exponential rate. Write a function to model this situation that has a B-value of 1.
where t is measured in days, and A(t) represents the amount of flooded land at time t. This function has a B-value of -0.3118.
To model the situation of the flood, we can use an exponential decay function, which represents the decreasing amount of flooded land over time. The function can be written as:
[tex]A(t) = A0 * e^{(-kt)}[/tex]
where A(t) is the amount of flooded land at time t, A0 is the initial amount of flooded land, k is a constant representing the rate of decay, and e is the mathematical constant approximately equal to 2.718.
To determine the value of k, we can use the given information that after 2 days, only 3375 acres of land were under water. Substituting t = 2 and A(t) = 3375 into the equation above, we get:
[tex]3375 = A0 * e^{(-2k)[/tex]
We also know that initially, there were 6000 acres of land under water. Substituting A0 = 6000 into the equation above, we get:
Dividing both sides by 6000, we get:
ln(0.5625) = -2k[tex]ln(0.5625) = -2k[/tex]
Taking the natural logarithm of both sides, we get:
[tex]ln(0.5625) = -2k[/tex]
Solving for k, we get:
[tex]k = -ln(0.5625)/2[/tex]
k ≈ 0.3118
Therefore, the function to model the situation of the flood is:
[tex]A(t) = 6000 * e^{(-0.3118t)}[/tex]
To learn more about function, visit
https://brainly.com/question/12431044
#SPJ1
you roll a 6-sided dice. what is the probability that you rolled a 5, given that the number rolled was greater than 3?
The probability that you rolled a 5, given that the number rolled was greater than 3, is 1/3 or approximately 0.333.
We need to find the probability that you rolled a 5, given that the number rolled was greater than 3. Let's break this down step by step:
1. Identify the total number of outcomes: Since it is a 6-sided dice, there are 6 possible outcomes (1, 2, 3, 4, 5, and 6).
2. Determine the number of outcomes greater than 3: The outcomes greater than 3 are 4, 5, and 6. There are 3 possible outcomes that satisfy this condition.
3. Identify the number of outcomes that result in rolling a 5: There is only 1 outcome that results in rolling a 5.
4. Calculate the probability: To find the probability, divide the number of outcomes that result in rolling a 5 (1) by the total number of outcomes greater than 3 (3).
Probability = (Number of outcomes with a 5) / (Number of outcomes greater than 3) = 1/3
So, the probability that you rolled a 5, given that the number rolled was greater than 3, is 1/3 or approximately 0.333.
Learn more about probability here:
https://brainly.com/question/4135343
#SPJ11
The probability that the number rolled was a 5, given that it was greater than 3, is [tex]$\frac{1}{3}$[/tex].
The number rolled was greater than 3, it must be either a 4, 5, or 6.
The probability that the number rolled was a 5, given that it was greater than 3.
Let [tex]$A$[/tex] be the event that the number rolled is a 5 and let [tex]$B$[/tex] be the event that the number rolled is greater than 3.
Then, we want to find. [tex]$P(A|B)$[/tex], the probability of [tex]$A$[/tex] given [tex]$B$[/tex].
By Bayes' theorem, we have:
Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
The risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than simply assuming that the individual is typical of the population as a whole.
One of the many applications of Bayes' theorem is Bayesian inference, a particular approach to statistical inference.
The probabilities involved in the theorem may have different probability interpretations.
Bayesian probability interpretation, the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence.
Bayesian inference is fundamental to Bayesian statistics, being considered by one authority as; "to the theory of probability what Pythagoras's theorem is to geometry."
[tex]$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$[/tex]
[tex]$P(A) = \frac{1}{6}$[/tex], since there is only one way to roll a 5 on a 6-sided die.
[tex]$P(B) = \frac{3}{6} = \frac{1}{2}$[/tex], since there are three outcomes (4, 5, or 6) that satisfy. [tex]$B$[/tex], out of a total of six possible outcomes.
[tex]$P(B|A)$[/tex], the probability of rolling a number greater than 3, given that the number rolled is a 5, note that. [tex]$B$[/tex] is true only if the number rolled is a 4, 5, or 6.
Since there is only one way to roll a 5, and only one of these three outcomes satisfies. [tex]$A$[/tex], we have:
[tex]$P(B|A) = \frac{1}{1} = 1$[/tex]
Substituting these values into Bayes' theorem, we get:
[tex]$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{1 \cdot \frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$[/tex]
For similar questions on probability
https://brainly.com/question/24756209
#SPJ11