The given sequence is not an arithmetic sequence. Option B is correct.
Determining the common difference of a sequenceGiven the sequence below
-2, -8, -32, -128
The nth term of an arithmetic sequence is given as Tn = a + (n-1)d
The common difference is the difference between the preceding and the succeeding term.
First term = -2
Second term = -8
Common difference = -8 -(-2) = -6
d= -32 + 8 = -24
Since the values are not equal, hence the sequence is not an arithmetic sequence.
Hence the common difference of the sequence is 8
Learn more on common difference here: https://brainly.com/question/23601373
#SPJ1
Find -3 3/4+1/2 on a number line
Answer: - 3 1/4
Step-by-step explanation:
- 3 3/4 + 1/2
Get a common denominator
-3 3/4 + 2/4
-3 1/4
A population begins with a single individual. In each generation, each individual in the population dies with probability 1/2 or doubles with probability 1/2. Let X_n denote the number of individuals in the population in the nth generation. Find the mean and variance of X_n.
The mean of [tex]X_n[/tex] is 1 and the variance of [tex]X_n[/tex] is [tex](4/7)((7/4)^n - 1).[/tex] The mean and variance of X_n can be found by using the law of total expectation and the law of total variance.
By the law of total expectation, we have : [tex]E[X_n] = E[E[X_n|X_{n-1}]][/tex]
Since each individual in the population dies with probability 1/2 or doubles with probability 1/2:
[tex]E[X_n|X_{n-1}] = (1/2)X_{n-1} + (1/2)(2X_{n-1}) = X_{n-1}[/tex]
Plugging this back into the law of total expectation :
[tex]E[X_n] = E[X_{n-1}] = E[X_{n-2}] = ... = E[X_0] = 1[/tex]
Therefore, the mean of [tex]X_n[/tex] is 1.
Next, let's find the variance of [tex]X_n[/tex] . By the law of total variance, we have:
[tex]Var(X_n) = E[Var(X_n|X_{n-1})] + Var(E[X_n|X_{n-1}])[/tex]
Since each individual in the population dies with probability 1/2 or doubles with probability 1/2, we can write:
[tex]Var(X_n|X_{n-1}) = (1/2)(X_{n-1} - X_{n-1})^2 + (1/2)(2X_{n-1} - X_{n-1})^2 = (3/4)X_{n-1}^2[/tex]
[tex]E[X_n|X_{n-1}] = X_{n-1}[/tex]
Plugging these back into the law of total variance, we get:
[tex]Var(X_n) = E[(3/4)X_{n-1}^2] + Var(X_{n-1}) = (3/4)E[X_{n-1}^2] + Var(X_{n-1})[/tex]
Since [tex]E[X_n] = 1,[/tex] we have:
[tex]E[X_{n-1}^2] = Var(X_{n-1}) + E[X_{n-1}]^2 = Var(X_{n-1}) + 1[/tex]
Plugging this back into the equation for [tex]Var(X_n)[/tex], we get:
[tex]Var(X_n) = (3/4)(Var(X_{n-1}) + 1) + Var(X_{n-1}) = (7/4)Var(X_{n-1}) + (3/4)[/tex]
Using the fact that [tex]Var(X_0) = 0[/tex], we can write:
[tex]Var(X_n) = (7/4)^nVar(X_0) + (3/4)(1 + (7/4) + ... + (7/4)^{n-1}) = (3/4)((7/4)^n - 1)/(7/4 - 1) = (4/7)((7/4)^n - 1)[/tex]
Therefore, the variance of [tex]X_n[/tex] is [tex](4/7)((7/4)^n - 1).[/tex]
In conclusion, the mean of [tex]X_n[/tex] is 1 and the variance of [tex]X_n is (4/7)((7/4)^n - 1).[/tex]
Know more about variance here:
https://brainly.com/question/14116780
#SPJ11
Jeremiah measure the volume of a sink basin by modeling it as a hemisphere. Jeremiah measures its radius to be
15
3
4
15
4
3
​
inches. Find the sink’s volume in cubic inches. Round your answer to the nearest tenth if necessary
The sink's volume in cubic inches is 8182.8 cubic inches according to the radius of hemisphere.
The volume of hemisphere is calculated by the formula -
Volume = 2/3πr³, where r represents radius of the hemisphere.
Before beginning the calculation, convert radius from mixed fraction to fraction.
Radius = (15×4)+3/4
Performing multiplication and addition
Radius = 63/4 inches
Volume =
[tex] \frac{2}{3} \times \pi \times {( \frac{63}{4}) }^{3} [/tex]
Performing multiplication and taking cube
Volume = 8182.77 inches³
Rounding to nearest tenth
Volume = 8182.8 cubic inches
Hence, the volume of hemisphere is 8182.8 cubic inches.
Learn more about hemisphere -
https://brainly.com/question/24247548
#SPJ4
The complete question is -
Jeremiah measure the volume of a sink basin by modeling it as a hemisphere. Jeremiah measures its radius to be
15 3/4 inches. Find the sink's volume in cubic inches. Round your answer to the nearest tenth if necessary
Dan measured the number of gallons of paint his paint sprayer uses in 4 hours, the sprayer uses 42 gallons. Can a constant rate be used to describe the relationship between the number of hours and the gallons of paint used? Explain.
Answer: To determine if a constant rate can be used to describe the relationship between the number of hours and the gallons of paint used, we need to see if the sprayer uses paint at a consistent rate over time.
From the information given, we know that in 4 hours, the sprayer uses 42 gallons of paint. This means that the rate of paint usage is 42/4 = 10.5 gallons per hour.
If the sprayer uses paint at a constant rate, then we would expect it to use the same amount of paint for each hour of use. However, we don't have any information about how the sprayer uses paint beyond the first 4 hours, so we can't determine if the rate of paint usage is constant over time.
Therefore, we cannot definitively say whether a constant rate can be used to describe the relationship between the number of hours and the gallons of paint used. It is possible that the rate of paint usage changes over time, or that other factors (such as the surface area being painted or the type of paint being used) affect the amount of paint used.
Step-by-step explanation:
45. Twenty-two runners compete in a cross-country race.
Three runners will each win a medal: gold, silver, or bronze.
Which of the following expressions gives the maximum
number of distinct ways the medals could be awarded?
9240
Step-by-step explanation:
In short, the maximum number of distinct ways the medals could be awarded in this race is 22 x 21 x 20 = 9240. This is calculated using a formula for permutations. Is there anything else you would like to know?
When solving a system of linear equations, what should you look for to help you decide which variable to isolate in the first step of the substitution method?
In response to the supplied query, we may state that As a result, the system of equations has a solution of x = 13/7 and y = -3/7.
What is a linear equation?In algebra, a linear equation is one that of the form y=mx+b. The slope is B, and the y-intercept is m. As y and x are variables, the previous sentence is frequently referred to as a "linear equation with two variables". Bivariate linear equations are linear equations with two variables. Linear equations may be found in many places, including 2x - 3 = 0, 2y = 8, m + 1 = 0, x/2 = 3, x + y = 2, and 3x - y + z = 3. When an equation has the structure y=mx+b, where m denotes the slope and b the y-intercept, it is referred to as being linear. A mathematical equation is said to be linear if its solution has the form y=mx+b, where m stands for the slope and b for the y-intercept.
When utilizing the substitution approach to solve a system of linear equations, you should search for an equation that already has one variable isolated.
For instance, take into account the equations below:
2x + 3y = 11
4x - y = 5
The second equation in this system has already had y determined. In order to eliminate y and find x, we can change the phrase 4x - 5 for y in the first equation:
[tex]14x = 26 x = 13/7 2x + 3(4x - 5) = 11 2x + 12x - 15 = 11\\ 4(13/7) y = 5\s52/7 - y = 5\sy = -3/7\\[/tex]
As a result, the system of equations has a solution of x = 13/7 and y = -3/7.
To know more about linear equation visit:
https://brainly.com/question/11897796
#SPJ1
Camila and her children went into a grocery store and where they sell apples for $0. 50 each and mangos for $0. 75 each. Camila has $7. 75 to spend and must buy no less than 11 apples and mangos altogether. If Camila decided to buy 8 apples, determine the maximum number of mangos that she could buy. If there are no possible solutions, submit an empty answer
The number of mangoes bought by Camila is 5 mangos.
We have given in the question,
Cost of each apple = $0.50
Cost of each mango = $0.75
Total amount Camila have = $7.75
Number of apples bought = 8
We have to find the number of mangoes bought by Camila
The calculation to find,
Assume;
The number of mangoes bought by Camila = a
So,
(0.50)(8) + (0.75)(a) = 7.75
4 + 0.75a = 7.75
0.75a = 3.75
a = 3.75 / 0.75
a = 5
Therefore, The number of mangoes bought by Camila is 5 mangos.
Learn more about numbers:
brainly.com/question/13652633
#SPJ4
A bag of peanuts could be divided among
8 children, 9 children, or 10 children with each
getting the same number, and with 2 peanuts
left over in each case. What is the smallest
number of peanuts that could be in the bag?
The smallest number of peanuts that could be in the bag is 4320.
Let's use the Chinese Remainder Theorem to solve this problem.
Let:
x be the number of peanuts in the bag.
Then we know that x ≡ 2 (mod 8), x ≡ 2 (mod 9), and x ≡ 2 (mod 10).
Using the Chinese Remainder Theorem, we can find a solution for x as follows:
Let
M = 8 * 9 * 10 = 720, and let M1, M2, and M3 be the remainders when M is divided by 8, 9, and 10 respectively.
That is, M1 = 720 mod 8 = 0, M2 = 720 mod 9 = 0, and M3 = 720 mod 10 = 0.
Let b1 = 1, b2 = 1, and b3 = 1.
Then we need to find integers a1, a2, and a3 such that a1 * M1 * b1 + a2 * M2 * b2 + a3 * M3 * b3 = 1.
One solution is a1 = 5, a2 = -4, and a3 = 1,
so we have 5 * 720 * 1 + (-4) * 720 * 1 + 1 * 720 * 1 = 7201
= M1 * b1 * 2 + M2 * b2 * 2 + M3 * b3 * 2.
This means that x = M1 * b1 * 2 + M2 * b2 * 2 + M3 * b3 * 2 is a solution to the system of congruences.
Since M1 = 0, we have x ≡ 0 (mod 8).
Since M2 = 0, we have x ≡ 0 (mod 9).
Since M3 = 0, we have x ≡ 0 (mod 10).
Therefore, the smallest positive integer solution for x is x = 720 * 1 * 2 + 720 * 1 * 2 + 720 * 1 * 2 = 4320.
To learn more about the Smallest number :
https://brainly.com/question/27862103
#SPJ11
Students are getting signatures for a petition to increase sports activities at the community center. The number of signatures they get each day is twice as many as the day before. The expressin 2 to the power of 6 represents the number of signatures thry got on thr sixth dsy. How many signatures did they grt on the first day?
The number of signatures they got on the first day is 2.
The problem can be solved mathematically by using the formula for geometric sequences, which is:
an = a1 × r^(n-1)
where:
an = the nth term in the sequence
a1 = the first term in the sequence
r = the common ratio between consecutive terms
n = the number of terms in the sequence
In this case, we know that the number of signatures they get each day is twice as many as the day before, which means that the common ratio is 2. We also know that the number of signatures they got on the sixth day is 2^6 = 64.
Using the formula for geometric sequences, we can solve for a1 by substituting the known values
64 = a1 × 2^(6-1)
64 = a1 × 2^5
a1 = 64 / 2^5
a1 = 2
Learn more about geometric sequence here
brainly.com/question/13008517
#SPJ4
3) State the domain of the function \( h(t)=\frac{\sqrt{t^{2}-16}}{t+3} \) \[ (-\infty,-4] \cup[4, \infty) \text { or }\{x \mid x \leq-4 \text { or } x \geq 4\} \]
The domain of a function refers to the set of all possible input values. We can easily find the domain of the given function h(t) using the following rules:
Since the denominator cannot be zero, we must exclude the value t = -3 from the domain. This means that the domain is {t | t ≠ -3}.
Furthermore, the expression inside the square root cannot be negative since the square root of a negative number is undefined. Thus, we have t^2 - 16 ≥ 0, which implies t ≤ -4 or t ≥ 4.
Therefore, the domain of the function h(t) is given by {t | t ≠ -3, t ≤ -4 or t ≥ 4}. This can also be written in set-builder notation as {t : t ≤ -4 or t ≥ 4, t ≠ -3}.
Hence, the correct option is {\color{Red}\boxed{(-\infty,-4] \cup[4, \infty) \text { or }{x \mid x \leq-4 \text { or } x \geq 4}}}
For further information on Function, refer below:
https://brainly.com/question/12431044
#SPJ11
Fill in the empty boxes.
Applying the product property of square roots, the items that will fill the empty boxes given the radicals above are:
2a: 3√2
2b: √24
2c: = 2√6
2d: √9 * √6
2e: √36 * √2
2f: 6√2
What is the Product Property of Square Roots?The product property of square roots states that the square root of a product of two numbers is equal to the product of the square roots of those numbers. In other words, if a and b are non-negative real numbers, then the square root of ab is equal to the square root of a multiplied by the square root of b. Mathematically, it can be written as:
√(ab) = √a * √b
Given the radicals above, we would have the following:
2a:
√18 = √9 * √2 = 3√2
2b and 2c:
√24 = √4 * √6 = 2√6
2d:
√54 = √9 * √6 = 3√6
2e and 2f:
√72 = √36 * √2 = 6√2
Learn more about the product property of square roots on:
https://brainly.com/question/4695958
#SPJ1
consider the density curve plotted below: 21 22 23 24 25 26 27 28 29 30 31 32 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 x pdf(x) density curve find : find : calculate the following. q1: median: q3: iqr:
Answer:
In this problem, we have a graph of the PDF (Probability Density Function). To compute probabilities in a certain interval (a, b), we must integrate this function from x = a to x = b.
(1) P(X ≤ 22)
We integrate the function from x = -∞ to x = 22, we get:
We separated the integral to use the data from the graph.
(2) P(X > 21)
We integrate the function from x = 21 to x = ∞, we get:
(3) The Q1 is the value x = a of the interval (-∞, a) that gives a probability equal to 0.25. So we must find x such that:
(4) The median is the value x = a of the interval (-∞, a) that gives a probability equal to 0.5. Proceeding as before, we have:
(5) The Q3 is the value x = a of the interval (-∞, a) that gives a probability equal to 0.75. Proceeding as before, we have:
(6) The IQR is given by the difference between Q3 and Q1. Using the results from above, we get:
Answer
• P(X ≤ 22) = 0.5
,
• P(X > 21) = 0.75
,
• Q1 = 21
,
• median = 22
,
• Q3 = 23
,
• IQR = 2
Step-by-step explanation:
Hope this helps
Given rectangle DEFG, if FD = 3x - 7 and EG = x + 5, find EG
As per the given rectangle, the length of EG is 5x - 7
We are given that DEFG is a rectangle, which means that its opposite sides are parallel and equal in length. Let's label the sides of the rectangle as follows:
DE = FG = a (since opposite sides of a rectangle are equal in length)
EF = DG = b (since opposite sides of a rectangle are parallel)
Now, we can use the given information to set up an equation for the length of EG:
EG = EF + FG = b + a
But we don't know the values of a and b. However, we are given that FD = 3x - 7 and EG = x + 5. We can use this information to solve for a and b.
We know that FD = DE - EF, so we can substitute the values we have:
3x - 7 = a - b
We also know that EG = FG - DG, so we can substitute the values we have:
x + 5 = a - b
Now we have two equations with two variables (a and b). We can solve for a and b by adding the two equations together:
3x - 7 + x + 5 = 2a
4x - 2 = 2a
a = 2x - 1
Now we can substitute this value for a in one of the earlier equations to solve for b:
3x - 7 = (2x - 1) - b
b = 3x - 6
Finally, we can substitute the values we found for a and b into the equation we set up earlier to find the length of EG:
EG = EF + FG = b + a = (3x - 6) + (2x - 1) = 5x - 7
Therefore, the length of EG is 5x - 7.
To know more about rectangle here
https://brainly.com/question/8663941
#SPJ4
i need help on this please
Answer:[tex]847\pi[/tex]
Step-by-step explanation:
[tex]v=\pi r^{2} h\\v=\pi 11^{2} 7\\v=847\pi[/tex]
In the first week of its release, the latest blockbuster movie sold $16. 3 million dollars in tickets. The movie’s producers use the formula Pt=P₀e^-0. 4t , to predict the number of ticket sales t weeks after a movie’s release P₀, where is the first week’s ticket sales. What are the predicted ticket sales to the nearest $0. 1 million for the sixth week of this movie’s release? (Note: t = 0 for the first week. )
( the ₀ is supposed to represent a small zero)
The equation Pt=P₀[tex]e^-0[/tex]. 4t is used to predict the ticket sales of a movie after its release. For the latest blockbuster movie, the predicted ticket sales for the sixth week of the movie’s release is $7. 9 million to the nearest $0. 1 million.
The formula used to predict the number of ticket sales t weeks after a movie’s release is Pt=P₀[tex]e^-0[/tex]. 4t, where P₀ is the first week’s ticket sales. In the case of the latest blockbuster movie, the first week’s ticket sales was $16. 3 million. To calculate the predicted ticket sales for the sixth week, the time t must be set to 6. The equation then becomes , which simplifies to Pt=7. 9 million. The predicted ticket sales for the sixth week of the movie’s release is therefore $7. 9 million to the nearest $0. 1 million. The equation is a useful tool for predicting the ticket sales of a movie over time. It reflects the fact that, generally, ticket sales for a movie will steadily decline over time, with the rate of decline being determined by the value of the exponent, -0. 4 in this case. By plugging in different values for t, one can easily calculate the predicted ticket sales for a movie at any given time.
Learn more about equation here
https://brainly.com/question/29657992
#SPJ4
what is an equation that is parallel to y=1/2x + 1/4 and passes through the points (-6, 5)
Answer: o find an equation that is parallel to the given line, we need to use the fact that parallel lines have the same slope.
The given line has a slope of 1/2, so any parallel line must also have a slope of 1/2.
Now we can use the point-slope form of a line to find the equation of the parallel line that passes through (-6, 5):
y - y1 = m(x - x1)
where m is the slope and (x1, y1) is the given point.
Plugging in m = 1/2 and (x1, y1) = (-6, 5), we get:
y - 5 = 1/2(x - (-6))
Simplifying:
y - 5 = 1/2(x + 6)
y - 5 = 1/2x + 3
y = 1/2x + 8
So the equation of the parallel line that passes through (-6, 5) is y = 1/2x + 8.
Brainliest is Appreciated.
Pleas answer this question
find cos X
Answer:
110x
Step-by-step explanation:
its 110x
For annually compounded interest, what rate would result in a single investment doubling in 3 years?
303
Step-by-step explanation:
21. A triangle has a base of 3 centimeters and
a height of 6 centimeters. Explain how the
area of the triangle will change if the base is
doubled.
Answer:
The area of a triangle is given by the formula A = 1/2 * base * height, where "base" is the length of the triangle's base and "height" is the length of the perpendicular line segment from the base to the opposite vertex.
If the base of a triangle is doubled, the height remains constant, and the area of the triangle will also double. This is because the area of a triangle is directly proportional to its base length.
In the case of the given triangle, if the base is doubled from 3 centimeters to 6 centimeters, the area of the triangle will become:
A = 1/2 * 6 cm * 6 cm = 18 cm²
Therefore, the area of the triangle will increase from 9 cm² to 18 cm² if the base is doubled while the height remains constant at 6 cm.
Step-by-step explanation:
If a fair die is rolled 7 times, what is the probability, to the nearest thousandth, of getting exactly 5 threes?
Answer:
0.119
Step-by-step explanation:
No. of sides a die has= 6 sides
No. of times it is rolled= 7 times
Total pairs= 6 x 7
= 42 pairs
No. of 5 threes= 5 x 1
= 5
Probability of getting 5 threes= Favorable outcomes/Total outcome
= [tex]\frac{5}{42}[/tex]
= 0.119 chance
∴ probability of getting 5 threes is 0.119
Jack has 7 yards of rope. He wants to cut it into pieces of different sizes. Jack needs 84 inches of rope to tie some packages and 4 feet of rope for another project. Does Jack have enough rope? Explain. Pls help
No, Jack does not have enough rope. First, we need to convert all units to the same measurement.
Since there are 36 inches in a yard, Jack has 7 x 36 = 252 inches of rope. Additionally, 4 feet is equal to 4 x 12 = 48 inches of rope.
To determine if Jack has enough rope, we need to add the 84 inches needed for the packages and the 48 inches needed for the other project, which gives a total of 132 inches.
Since 132 inches is greater than Jack's total of 252 inches, he does not have enough rope.
Learn more about Basic Maths:
https://brainly.com/question/17083065
#SPJ4
please solve with steps, im very confused
The table are shown below
The domains of the three functions are x <= 0, 0 < x <= 5 and x > 5The range of the three functions are f(x) >= -1, -1 < f(x) <= 9 and f(x) = 3The graph is attachedHow to make a table of value for the functionsFrom the question, we have:
f(x) = x^2 - 1 x <= 0
2x - 2 0 < x <= 5
3 x > 5
So, we make the table using the x values in the domain
x f(x) = x^2 - 1
0 -1
-1 0
-2 3
-3 8
x f(x) = 2x - 1
1 1
2 3
3 5
4 7
5 9
x f(x) = 3
6 3
7 3
8 3
The domain and the rangeThe domain are given in the question
So, we have the domains of the three functions to be
x <= 0, 0 < x <= 5 and x > 5
Using the table of values, we have the range of the three functions to be
f(x) >= -1, -1 < f(x) <= 9 and f(x) = 3
How to determine the graphHere, we use a graphing calculator
The graph of the function is added as an attachment
Read more about piecewise function at
https://brainly.com/question/27262465
#SPJ1
12
Solve for the value of X. Round to the nearest tenth
if necessary.
X
23
2500 m
On solving the provided question we cans ay that As a result, X is 2477, function rounded to the closest tenth.
what is function?Mathematicians examine numbers with their modifications, equations and associated structures, forms and their locations, and feasible positions for these things. The term "function" indicates the connection between a collection of inputs, each of which has a corresponding output. A function is a connection of inputs and outputs where each supply leads to a specific, identifiable outcome. Each function is assigned a domain, a codomain, or a scope. The letter f is widely used to denote functions (x). The symbol for entry is an x. The four primary types of accessible capabilities are on functions, yet another skills, so multiple capabilities, in capabilities, and on operations.
To find X, we must isolate it on one side of the equation by executing the identical procedure on both sides.
X + 23 = 2500
Taking 23 off both sides:
X = 2500 - 23
To simplify: X = 2477
As a result, X is 2477, rounded to the closest tenth.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ1
*2 SIMPLE QUESTIONS FOR 20 POINTS!!*
Hello! Please help!!! I am not good at calculating this stuff
Thank you very much!
<3
The value of x is given as follows:
x = 10.
The geometric mean between 15 and 18 is given as follows:
16.43.
How to obtain the value of x?The two triangles for the problem are similar, meaning that the proportional relationship for the side lengths is given as follows:
x/20 = 6/12.
The relationship can be simplified as follows:
x/20 = 0.5.
Applying cross multiplication, the value of x is obtained as follows:
x = 20 x 0.5
x = 10.
How to obtain the geometric mean of 15 and 18?The geometric mean between two amounts is given by the square root of the multiplication of these two amounts.
Hence, for the amounts 15 and 18, the geometric mean is given as follows:
sqrt(15 x 18) = 16.43.
More can be learned about similar triangles at brainly.com/question/14285697
#SPJ1
The shift in the poem's rhythm In the last stanza signifies
The change in tempo and rhyme scheme in the final stanza both hint at the speaker's unclear identity. It gives satirical overtones to the creations.
Poets choose particular rhyme schemes to elicit different responses from their audiences. It fosters a particular atmosphere and mood that may affect how we respond to the poem's themes. Rhyme can be rigid or have satirical overtones, or it can have a playful or playful atmosphere.
What effects do rhyme and rhythm have on poetry?When a poem has rhyme and meter, it is more musical. In traditional poetry, the anticipated enjoyment of a predictable rhyme aids in memorization for recitation. The use of a rhyme scheme also establishes the form. The shift in the poem's rhythm In the last stanza signifies the poets uncertain identity.
Learn more about rhyme scheme at:
brainly.com/question/17419574
#SPJ4
simplify the expression 16+(-3)-3/7j-6/7j+4
Step-by-step explanation:
To simplify the expression 16+(-3)-3/7j-6/7j+4, we first need to combine like terms. The real numbers (16, -3, and 4) can be added together, and the imaginary numbers (-3/7j and -6/7j) can also be added together. So we have:
16 + (-3) + 4 + (-3/7j) + (-6/7j)
Simplifying the real numbers:
= 16 - 3 + 4
= 17
Simplifying the imaginary numbers:
= (-3/7j) + (-6/7j)
= (-9/7j)
Putting it all together, we get:
16 + (-3) - 3/7j - 6/7j + 4 = 17 - 9/7j
So the simplified expression is 17 - 9/7j.
A New York Times/CBS News Poll asked a random sample of U.S. adults the question "Do you favor an amendment to the Constitution that would permit organized prayer in public schools?" Based on this poll, the 95% confidence interval for the population proportion who favor such an amendment is (0.63, 0.69). Based on this poll, a reporter claims that more than two-thirds of U.S. adults favor such an amendment. Use the confidence interval to evaluate the reporter's claim.
a. Because the value 2/3 = 0.667 (and values greater than 2/3) are in this interval, it is plausible that more than 2/3 of the population favor such an amendment. Thus, there is convincing evidence that more than 2/3 of U.S. adults favor such an amendment.
b. Because 2/3 = 0.667 is included in this interval, it is plausible that more than 2/3 of U.S. adults favor such an amendment.
c. 95% of the time there will be more than two-thirds of U.S. adults in favor of such an amendment. Because 0.95 > 0.667, the reporter's claim is correct.
d. Because the value 2/3 = 0.667 (and values less than 2/3) are in this interval, it is plausible that 2/3 or less of the population favor such an amendment. Thus, there is not convincing evidence that more than 2/3 of U.S. adults favor such an amendment.
e. Because the value 2/3 = 0.667 (and values less than 2/3) are in this interval, it is plausible that 2/3 or less of the population favor such an amendment. Thus, there is convincing evidence that more than 2/3 of U.S. adults fuvor such an amendment.
The 95% confidence interval for the population proportion who favor an amendment for organized prayer in public schools does not provide convincing evidence that more than two-thirds.
Because the value 2/3 = 0.667 (and values less than 2/3) are in this interval, it is plausible that 2/3 or less of the population favor such an amendment. Thus, there is not convincing evidence that more than 2/3 of U.S.The 95% confidence interval for the population proportion who favor such an amendment is (0.63, 0.69). This means that if the same poll was conducted over and over again, 95% of the time the results would fall within this interval. Since the interval includes values less than 2/3, it is possible that 2/3 or less of the population favor such an amendment. Therefore, there is not convincing evidence that more than two-thirds of important to note that the confidence interval does not provide conclusive evidence either way, only an indication of the likely proportions in the population.
Learn more about confidence interval here
https://brainly.com/question/24131141
#SPJ4
the risk of hepatoma among alcoholics without cirrhosis of the liver is 24%. suppose we observe 7 alcoholics without cirrhosis. answer the following question: a) what is the probability that exactly one of these 7 people have a hepatoma?
The probability that exactly one of these 7 people have a hepatoma is 0.35 or 35%
The risk of hepatoma among alcoholics without cirrhosis of the liver is 24%.We need to find the probability that exactly one of these 7 people have a hepatoma. Let the probability of having hepatoma be P(A) = 24% = 0.24 (given). Therefore, the probability of not having a hepatoma is P(A') = 1 - P(A) = 1 - 0.24 = 0.76. We have n = 7 people.
The probability of exactly 1 person having a hepatoma is P(1 person having hepatoma) = C(7,1) × P(A) × [tex]P(A')^{6}[/tex].
C(n, x) is the combination of n things taken x at a time. C(7,1) = 7!/1!6! = 7P(1 person having hepatoma) = 7 × 0.24 × (0.76)⁶= 0.35
Therefore, the probability that exactly one of these 7 people have a hepatoma is 0.35 or 35%.
Learn more about probability: https://brainly.com/question/13604758
#SPJ11
Consider the following data for a closed economy: Y=$14 trillion
C=$8 trillion
G=$3 trillion
Spub=$1 trillion
T=$5 trillion
What is the level of private saving, spriv, in this economy?
The level of private saving in the given closed economy is $4 trillion.
Given, Y = $14 trillion C = $8 trillion G = $3 trillion S pub = $1 trillion T = $5 trillion We have to find the level of private saving, spriv, in this economy.
In a closed economy: Y = C + I + G Here, I = investment in the economy Thus, Y = C + S + T When we add G to both sides of the equation we get, Y + G = C + S + T + G Now, from the given data we have, Y + G = $14 + $3 = $17 trillion C = $8 trillion T = $5 trillion
So, we have, Y + G = C + S + T + G Solving for S, we get; S = Y + G - C - TS = $17 trillion - $8 trillion - $5 trillion S = $4 trillion Therefore, the level of private saving in the given closed economy is $4 trillion.
Learn more about Economy
brainly.com/question/2421251
#SPJ11
I NEED HELP ASAP!!!!
I got ya.
I wrote the answers in the boxes.