4. Convert 850,000,000 milliliters to kiloliters. Use the conversion factors 1 liter = 1,000 milliliters and 1 kiloliter = 1,000 liters.

850 kiloliters

8. 50 - 10% kiloliters

ESO

850 liters

0. 850 kiloliters

Answers

Answer 1

850 kiloliters are equal to 850,000,000 millilitres.

To convert 850,000,000 milliliters to kiloliters, we can use the conversion factor 1 kiloliter = 1,000 liters and 1 liter = 1,000 milliliters.

First, we need to convert the milliliters to liters by dividing 850,000,000 by 1,000:

850,000,000 milliliters / 1,000 = 850,000 liters

Then, we can convert the liters to kiloliters by dividing 850,000 by 1,000:

850,000 liters / 1,000 = 850 kiloliters

Therefore, 850,000,000 milliliters is equivalent to 850 kiloliters.

To learn more about conversion factors refer to:

brainly.com/question/30650227

#SPJ4


Related Questions

To earn full credit for your answers, you must show the appropriate formula, the correct substitutions , and your answer including the correct units

A pod of 51 orcas has 15 births and 8 deaths.

How many years will it take for the population of orca to double?

Answers

The number of years it will take for the population of orcas to double, given the births and deaths is 5. 10 years .

How to find the population doubling time ?

To find the population doubling time, we first need to find the rate at which the population of orcas grew in the current year:

= ( 15 births - 8 deaths ) / 51 orcas

= 7 / 51 x 100 %
= 13. 7 %

Then, we can use the Rule of 70 to find the doubling time. The Rule of 70 shows the periods till doubling as :

= 70 / growth rate

= 70 / 13.7

= 5. 10 years

Find out more on doubling time at https://brainly.com/question/29317660

#SPJ1

98 kJ +NaHCO, -> Na,CO, + CO2 + H20
How much heat will be absorbed when 3. 0 grams of NaHCO, decompose?

Answers

3.0 grams of NaHCO₃  will receive about 1.76 kJ of heat during the decomposition process.

To calculate the amount of heat absorbed when 3.0 grams of NaHCO₃ decompose, we need to first determine the limiting reactant and then use the balanced chemical equation and the enthalpy change to calculate the amount of heat absorbed.

The balanced chemical equation for the decomposition of NaHCO₃ is:

2 NaHCO₃(s) → Na₂CO₃(s) + CO₂(g) + H₂O(g)

The enthalpy change for this reaction is not given, but assuming it is an endothermic reaction, the heat absorbed can be represented as a positive value.

First, we need to determine the limiting reactant. The molar mass of NaHCO₃ is:

NaHCO₃: 23.0 + 1.0 + 12.0 + 48.0 = 84.0 g/mol

Using the molar mass, we can convert 3.0 g of NaHCO₃ to moles:

3.0 g NaHCO₃ x (1 mol NaHCO₃/84.0 g NaHCO₃) = 0.0357 mol NaHCO₃

From the balanced equation, we know that 2 moles of NaHCO₃ produces 1 mole of CO₂. So, the moles of CO₂ produced from 0.0357 mol of NaHCO₃ is:

0.0357 mol NaHCO₃ x (1 mol CO₂/2 mol NaHCO₃) = 0.0179 mol CO₂

Next, we can use the enthalpy change for the reaction and the moles of CO₂ produced to calculate the heat absorbed:

0.0179 mol CO₂ x (98 kJ/1 mol) = 1.76 kJ

Therefore, the amount of heat absorbed when 3.0 grams of NaHCO₃ decompose is approximately 1.76 kJ.

To learn more about NaHCO₃  refer to:

brainly.com/question/14969036

#SPJ4

Name the planet: This greenish-blue planet's axis of rotation is sideways and takes 84 years to revolve around the sun

Answers

The planet being described is Uranus.

Uranus is the seventh planet from the sun in our solar system, and it is known for its distinctive greenish-blue color. It is a gas giant planet, similar in composition to Jupiter and Saturn, and it is much larger than Earth, with a diameter of about 51,118 km.

One of the most unique features of Uranus is its axis of rotation, which is tilted at an angle of about 98 degrees relative to its orbit around the sun. This means that instead of spinning upright like most other planets, Uranus appears to be rolling on its side. As a result, its seasons are much more extreme than those of other planets, with each pole experiencing 42 years of continuous daylight followed by 42 years of continuous darkness.

Uranus takes about 84 years to complete one orbit around the sun, which means that it spends roughly 7 years in each zodiac sign. This long orbital period, combined with its distance from Earth, means that it was not discovered until relatively recently in human history. It was first observed by the astronomer William Herschel in 1781, and it was named after the ancient Greek deity of the sky.

learn more about Uranus at :

https://brainly.com/question/9048375

#SPJ4

1) Many alloys, such as brass (made from zinc and copper) is a solid
in which the atoms of two or more metals are uniformly
mixed.
* solution
* suspension
* colloid
* pure substance
2)Fog is an example of colloid that has the phase of......
* liquid dispersed in gas
* liquid dispersed in liquid
* liquid dispersed in solid
* solid dispersed in solid

Answers

Explanation:

1 solution

2 liquid dispersed in gas

If 78. 2 grams of oxygen (O2) react with plenty of copper Cu, how many moles of

copper (II) oxide (CuO) will be produced?

Answers

Answer:

The molar mass of oxygen is 32 g. Hence the number of moles of oxygen are: 78.2 g / (32 g/mole) = 78.2/32 moles Since 1 mole of oxygen produces 2 moles of copper oxide, the number of moles of copper oxide generated are: (78.2/32) x 2 moles = 4.89 moles of copper oxide.

Explanation:

How could this quotation relate to the concepts of distance and displacement explain your answer​

Answers

because tye topic is all about length of travel either it pertains to a total amount of length of travel or not

How much of a 10 M solution is needed to make 1 liter of a 1 M solution?
1 mL
10 mL
100 mL
1000 mL​

Answers

We need to add 100 mL (0.1 liter) of the 10 M solution to 900 mL (0.9 liter) of solvent to make 1 liter of a 1 M solution. Option C is correct.

To make a 1 liter solution of 1 M concentration, we need to dilute the 10 M solution by a factor of 10.

The dilution factor is the ratio of the final volume to the initial volume, which is 1 liter / 0.1 liter = 10.

So, we need to add 1 part of the 10 M solution to 9 parts of solvent (usually water) to make a total of 10 parts, which will result in a 1 M solution.

Therefore, we need to add 100 mL (0.1 liter) of the 10 M solution to 900 mL (0.9 liter) of solvent to make 1 liter of a 1 M solution.

Hence, C. 100 mL is the correct option.

To know more about solution here

https://brainly.com/question/1416865

#SPJ4

--The given question is incomplete, the complete question is

"How much of a 10 M solution is needed to make 1 liter of a 1 M solution? A) 1 mL B) 10 mL C) 100 mL D) 1000 mL​."--

8.45 x 10^23 molecules ch4

Answers

The number of mole of the sample containing 8.45×10²³ molecules CH₄ is 1.4 mole

How do I determine the number of mole?

Avogadro's hypothesis gives a well defined relationship between number of mole and number of molecules. This is given below:

6.022×10²³ molecules = 1 mole of substance

Thus, we can say that 1 mole of methane, CH₄ will be equivalent to 6.022×10²³ molecules as shown below:

6.022×10²³ molecules = 1 mole of CH₄

With the above information, we can determine the number of mole containing  8.45×10²³ molecules. Details below:

6.022×10²³ molecules = 1 mole of CH₄

8.45×10²³ molecules = 8.45×10²³ / 6.022×10²³

8.45×10²³ molecules = 1.4 mole of CH₄

Thus, the number of mole  is 1.4 mole

Learn more about mole:

https://brainly.com/question/13314627

#SPJ1

Complete question:

What is the number of mole of a sample containing 8.45×10²³ molecules CH₄

Explain how sunlight can cause a crack in the street.

Answers

Oxidation breaks down and dries out the once flexible liquid asphalt that holds the aggregate together. This causes raveling and shrinking cracks which allow water to penetrate beneath the surface.

What do these two changes have in common? a piece of pear turning brown and bleaching clothes
Both are caused by cooling.
Both are changes of state.
Both are chemical changes.
Both are caused by heating.​

Answers

Answer:

Neither of these changes are caused by cooling, but both are chemical changes.

who has the low density.... lithium or lead and why??​

Answers

Answer:

Lithium has a lower density than lead.

The density of an element is determined by its atomic mass and the packing arrangement of its atoms. Lithium has an atomic mass of 6.94 atomic mass units (amu), while lead has an atomic mass of 207.2 amu, which is significantly higher.

In addition to atomic mass, the density of an element is also affected by the arrangement of its atoms. Lithium has a much larger atomic radius than lead, meaning that its atoms are less tightly packed together. This results in a lower overall density for lithium compared to lead.

To provide some context, the density of lithium is approximately 0.53 grams per cubic centimeter (g/cm3), while the density of lead is approximately 11.34 g/cm3. This means that lead is about 21 times denser than lithium.

Heyy can someone plsss help me with this question!!!




From your reading of these poems, what was the impact of the Tang wars on the poet Du Fu personally, and on Chinese society in general?

Answers

The Quantashia, the largest collection of Tang poetry, has over 48,900 lyrics by more than 2,200 poets. Because poetry was such a huge part of the Tang Dynasty's culture at the time, a significant amount of it has remained. It had great impact on Chianese society.

Poetry remained a significant component of social life at all societal levels during the Tang period. For the civil service tests, scholars had to be proficient in poetry, but everyone had access to it in theory. This resulted to a significant record of poetry and poets, a fragmentary record of which persists today. Li Bai and Du Fu were two of the most well-known poets of the day. Chinese educated people today are familiar with Tang poetry because to the Three Hundred Tang Poems.

Learn more about the impact here:

https://brainly.com/question/1116029

#SPJ4

chemistry need help please

Answers

The number of moles of hydrogen that can be made from 4.89 x 10-22 atoms of iron is 6.65 x 10-26 moles H2.

What is hydrogen ?

Hydrogen is the most abundant element found in the universe. It is a colorless, odorless gas that is the lightest of all elements. Hydrogen has the symbol H and the atomic number 1. It is the most basic building block of all matter. Hydrogen is an important part of many molecules, including water (H2O), proteins, and fats. It is a key component of many fuels, including gasoline, natural gas, and propane. Hydrogen is used in the production of ammonia, methanol, and other chemicals. It is also used in fuel cells.

To learn more about hydrogen

https://brainly.com/question/24433860

#SPJ1

Model It! Dry Ice Figure 8 Dry ice sublimes, changing directly from a solid to a gas. SEP Develop Models Think about what is happening to the particles of carbon dioxide as the dry ice changes from solid to gas. Draw models of the particles in the two phases of matter. Use an arrow to show the flow of thermal energy into the solid carbon dioxide.​

Answers

model of the particles in solid carbon dioxide (dry ice):

   __         __

  /    \       /    \

 |  o  |      |  o  |

\____/  \____/

model of the particles in gaseous carbon dioxide:

  o       o

     o

o       o

The arrows showing the flow of thermal energy into the solid carbon dioxide could be represented as:

  __      __

/    \  /    \

|  →  |  |  o  |

\____/  \____/

The arrow depicts how heat energy is transferred into the solid carbon dioxide, causing it to sublime and become gaseous carbon dioxide.

Carbon dioxide exists in a solid form as dry ice. It directly transforms into a gas when brought to room temperature, a process known as sublimation.

Thermal energy is introduced into the solid carbon dioxide during this process, causing its particles to separate and turn into a gas.

The discharge of the gas is caused by the gaseous carbon dioxide particles' increased freedom of movement and spreading out.

In conclusion, dry ice is an intriguing substance that transforms through a special process known as sublimation from a solid to a gas. This process happens as a result of thermal energy entering the solid and forcing its particles to disperse and turn into a gas.

Science-related fields like cryogenics, food preservation, and even special effects can benefit from understanding the behavior of dry ice and the underlying concepts of sublimation.

learn more about thermal energy here

https://brainly.com/question/19666326

#SPJ1

1. What is the percent by volume of a solution formed by mixing 349 mL of isopropanol with 380mL of water?

2. What is the mass of a solute in a solution with 65% (m/m) of a solute and a mass of the solution is 327. 0g?

3. Calculate the molarity of 171g of KBr dissolved in 829. 0 mL pure water

Answers

The percent by volume of a solution formed by mixing 349 mL of isopropanol with 380mL of water. The mass of a solute in a solution with 65% (m/m) of a solute and a mass of the solution is 327g. The molarity of 171g of KBr dissolved in 829. 0 mL pure water

1. The percent by volume of the solution formed by mixing 349 mL of isopropanol and 380 mL of water is 52.2% and 47.8%.

To find the percent by volume of the solution, we need to add the volumes of the two components and then calculate the percentage of each component in the total volume:

Total volume = [tex]349 mL + 380 mL = 729 mL[/tex]

Percent by volume of isopropanol = [tex](349 mL / 729 mL) * 100percent = 47.8 percent[/tex]

% by volume of water = [tex](380 mL / 729 mL) * 100 percent = 52.2percent[/tex]

Therefore, the solution contains 47.8% (v/v) of isopropanol and 52.2% (v/v) of water.

2. The mass of the solute in a solution with 65% (m/m) of a solute and a mass of the solution of 327.0 g is 212.55 g.

We are given the mass percent (m/m) of the solute and the total mass of the solution. Therefore, we can calculate the mass of the solute using the following formula:

Mass of solute = Mass of solution x Mass percent of solute

Mass of solute = [tex]327.0 g * 0.65 = 212.55 g[/tex]

Therefore, the mass of the solute is 212.55 g.
3. The molarity of 171g of KBr dissolved in 829.0 mL of pure water is 1.74 M.

To calculate the molarity of KBr in the solution, we need to first calculate the number of moles of KBr present in the solution using the following formula:

Number of moles = Mass of solute / Molar mass of KBr

The molar mass of KBr is 119 g/mol (39 g/mol for K and 80 g/mol for Br).

Number of moles = 171 g / 119 g/mol = 1.44 mol

The volume of the solution is given in mL, so we need to convert it to liters:

Volume of solution = 829.0 mL = 0.8290 L

Now, we can calculate the molarity using the following formula:

Molarity = Number of moles / Volume of solution

Molarity = 1.44 mol / 0.8290 L = 1.74 M

Therefore, the molarity of the KBr solution is 1.74 M.

For more question on volume click on

https://brainly.com/question/19491767

#SPJ4

M bromoaniline dayazonium to m bromoaniline ,which reagent is preferred

Answers

Stannous chloride (SnCl2) in a solution of hydrochloric acid (HCl) is the preferred reagent, also known as the HCl-SnCl2 reduction process, to convert m-bromoaniline diazonium to m-bromoaniline.

Reagents are substances that help a chemical process identify, measure, or make other chemicals. It can be applied to check for the presence or absence of certain compounds, analyse the chemical composition of a substance, or generate the desired outcome. Reagents can be organic or inorganic and can be solid, liquid, or gaseous. They can be either relatively inert or extremely reactive, depending on the intended function. Examples of common reagents include acids, bases, oxidising, reducing, catalytic, and indicator reagents. The specific reaction and the desired outcome, as well as factors like accessibility, cost, and safety, all have an impact on the reagent selection.

Learn more about reagent here:

https://brainly.com/question/11848702

#SPJ4

A 500. 0-mL buffer solution is 0. 100 M in HNO2 and 0. 150 M in KNO2. Part A Determine whether or not 250 mgNaOH would exceed the capacity of the buffer to neutralize it. Determine whether or not 250 would exceed the capacity of the buffer to neutralize it. Yes no Request Answer Part B Determine whether or not 350 mgKOH would exceed the capacity of the buffer to neutralize it. Determine whether or not 350 would exceed the capacity of the buffer to neutralize it. Yes no Request Answer Part C Determine whether or not 1. 25 gHBr would exceed the capacity of the buffer to neutralize it. Determine whether or not 1. 25 would exceed the capacity of the buffer to neutralize it. Yes no Request Answer Part D Determine whether or not 1. 35 gHI would exceed the capacity of the buffer to neutralize it. Determine whether or not 1. 35 would exceed the capacity of the buffer to neutralize it. Yes no

Answers

Part A: No, 250 mg NaOH would not exceed the capacity of the buffer to neutralize it.

Part B: No, 350 mg KOH would not exceed the capacity of the buffer to neutralize it.

Part C: Yes, 1. 25 g HBr would exceed the capacity of the buffer to neutralize it.

Part D: Yes, 1. 35 g HI would exceed the capacity of the buffer to neutralize it.

Part A:

We first need to calculate the pH of the buffer solution using the Henderson-Hasselbalch equation to see if 250 mg NaOH would surpass the buffer's ability to neutralise it:

pH = pKa + log([[tex]A^-[/tex]]/[HA])

where

pKa is the acid dissociation constant of [tex]HNO_2[/tex],

[[tex]A^-[/tex]] is the conjugate base concentration ([tex]NO_2^-[/tex]),

[HA] is the acid concentratio ([tex]HNO_2[/tex]).

The pKa of [tex]HNO_2[/tex] is 3.15, so:

pH = 3.15 + log([[tex]NO_2^-[/tex]]/[[tex]HNO_2[/tex]])

pH = 3.15 + log(0.150/0.100)

pH = 3.40

The buffer is a basic buffer since its pH is higher than 7.

As a result, we must determine how many moles of [tex]NO_2^-[/tex] there are in 500.0 mL of the buffer solution:

moles of [tex]NO_2^-[/tex] = concentration x volume

moles of [tex]NO_2^-[/tex] = 0.150 mol/L x 0.500 L

moles of [tex]NO_2^-[/tex] = 0.075 mol

It is necessary to convert 250 mg of NaOH into moles in order to assess whether the buffer can neutralise it:

moles of NaOH = mass / molar mass

moles of NaOH = 0.250 g / 40.00 g/mol

moles of NaOH = 0.00625 mol

Since

[tex]NaOH + HNO_2[/tex] → [tex]NaNO_2 + H_2O[/tex]

The amount of [tex]HNO_2[/tex] consumed by 0.00625 mol of NaOH is:

moles of [tex]HNO_2[/tex] consumed = 0.00625 mol

Since

the buffer initially contained 0.100 mol/L of [tex]HNO_2[/tex], the number of moles of [tex]HNO_2[/tex] in 500.0 mL of the buffer solution is:

moles of [tex]HNO_2[/tex] = concentration x volume

moles of [tex]HNO_2[/tex] = 0.100 mol/L x 0.500 L

moles of [tex]HNO_2[/tex] = 0.050 mol

Consequently, 0.050 mol of  [tex]HNO_2[/tex] can be neutralised by the buffer, while 0.00625 mol of  [tex]HNO_2[/tex] is actually consumed by 0.00625 mol of NaOH. The buffer can neutralise 250 mg of NaOH because the amount of  [tex]HNO_2[/tex] used by the NaOH is less than the amount of  [tex]HNO_2[/tex] present initially.

Part B:

Evaluate if 350 mg KOH would be too much for the buffer to neutralise.

We must first determine the buffer solution's pH:

pH = pKa + log([[tex]A^-[/tex]]/[HA])

pH = 3.15 + log([tex][NO_2^-]/[HNO_2][/tex])

pH = 3.15 + log(0.150/0.100)

pH = 3.40

Since

The buffer is a basic buffer since its pH is higher than 7.

The concentration of the conjugate base in the buffer solution determines a basic buffer's ability to neutralize a base (like KOH). As a result, we must determine how many moles of [tex]NO_2^-[/tex] there are in 500.0 mL of the buffer solution:

moles of [tex]NO_2^-[/tex] = concentration x volume

moles of [tex]NO_2^-[/tex]  = 0.150 mol/L x 0.500 L

moles of [tex]NO_2^-[/tex]  = 0.075 mol

To find whether the buffer can neutralize 350 mg KOH, we need to convert 350 mg to moles:

moles of KOH = mass / molar mass

moles of KOH = 0.350 g / 56.11 g/mol

moles of KOH = 0.00624 mol

Since

KOH is a strong base, it will react completely with the [tex]HNO_2[/tex] in the buffer to form [tex]KNO_2[/tex] and water:

[tex]KOH + HNO_2[/tex] → [tex]KNO_2 + H_2O[/tex]

The amount of [tex]HNO_2[/tex] consumed by 0.00624 mol of KOH is:

moles of [tex]HNO_2[/tex]  consumed = 0.00624 mol

Since

[tex]HNO_2[/tex] was initially present in the buffer at a concentration of 0.100 mol/L; hence, there are 500.0 mmol of  [tex]HNO_2[/tex]   in the buffer solution.

moles of  [tex]HNO_2[/tex]   = concentration x volume

moles of  [tex]HNO_2[/tex]   = 0.100 mol/L x 0.500 L

moles of  [tex]HNO_2[/tex]   = 0.050 mol

As a result, 0.050 mol of  [tex]HNO_2[/tex] can be neutralised by the buffer, while 0.00624 mol of  [tex]HNO_2[/tex] is actually consumed by 0.00624 mol of KOH. The buffer can neutralise 350 mg of KOH because the amount of  [tex]HNO_2[/tex]used by the KOH is smaller than the amount of  [tex]HNO_2[/tex] present at first in the buffer.

Part C:

We must first decide if 1.25 g of HBr is an acid or a basic in order to assess whether it would be too much for the buffer to neutralise.

As HBr is an acid and the problem's buffer is a basic buffer, an acid cannot be neutralised.

Consequently, we may deduce that the buffer is unable to neutralise 1.25 g HBr without having to conduct any computations.

Part D:

We must first decide if 1.35 g of HI is an acid or a basic in order to assess whether it would be too much for the buffer to neutralise.

As HI is an acid and the problem's buffer is a basic buffer, an acid cannot be neutralised by it.

Consequently, we may deduce that the buffer is unable to neutralise 1.35 g of HI without having to conduct any computations.

For similar question on Henderson-Hasselbalch equation

https://brainly.com/question/13423434

#SPJ4

Please help me on this. I have no idea how to figure this out.

Answers

The season the northern hemisphere is experiencing is A, summer.

When do these seasons occur?

Summer: June solstice to September equinox. Summer is the season that follows spring and precedes fall. It typically begins around June 20th or 21st and lasts until around September 22nd or 23rd.

Fall (Autumn): September equinox to December solstice. Fall is the season that follows summer and precedes winter. It typically begins around September 22nd or 23rd and lasts until around December 20th or 21st.

Winter: December solstice to March equinox. Winter is the season that follows fall and precedes spring. It typically begins around December 20th or 21st and lasts until around March 20th or 21st.

Spring: March equinox to June solstice. Spring is the season that follows winter and precedes summer. It typically begins around March 20th or 21st and lasts until around June 20th or 21st.

Find out more on seasons here: https://brainly.com/question/923847

#SPJ1

Image transcribed:

BAND HALL

Earth and Space

What season is the northern hemisphere experiencing?

A Summer

B. Spring

C. Winter

D. Fall

You are given 100 ml of a solution of potassium hydroxide with a ph of 12. 0. You are required to change the pH to 11. 0 by adding water. How much water do you add

Answers

Explanation:

To calculate the amount of water needed to dilute the solution of potassium hydroxide and change its pH from 12.0 to 11.0, we need to use the formula for calculating the pH of a diluted solution.

The formula is:

pH = -log[H+]

where [H+] is the concentration of hydrogen ions in moles per liter.

Since we are diluting the solution by adding water, the concentration of [OH-] (hydroxide ions) will decrease proportionally to the volume of water added. This means that we can use the following equation to calculate the new concentration of [OH-]:

[OH-]1V1 = [OH-]2V2

where V1 is the initial volume of the solution, [OH-]1 is the initial concentration of hydroxide ions, V2 is the final volume of the solution after dilution, and [OH-]2 is the final concentration of hydroxide ions.

We know that the initial pH is 12.0, which means that [OH-]1 = 10^-2.0 M = 0.01 M.

We want to change the pH to 11.0, which means that [OH-]2 = 10^-11.0 M = 1 x 10^-11 M.

We also know that we are adding water to dilute the solution, but we don't know how much water we need to add yet. Let's call this volume of water "Vw".

Using the equation above, we can solve for V2:

[OH-]1V1 = [OH-]2V2

(0.01 M)(100 ml) = (1 x 10^-11 M)(100 ml + Vw)

V2 = (0.01 M)(100 ml)/(1 x 10^-11 M) - Vw

V2 = 10^12 ml - Vw

Now we can use this value for V2 in the pH formula to calculate the new pH:

pH = -log([H+])

[H+] = Kw/[OH-]

Kw is the ion product constant for water, which is equal to 1 x 10^-14 at room temperature.

[H+] = (1 x 10^-14)/(1 x 10^-11)

[H+] = 1 x 10^-3 M

pH = -log(1 x 10^-3)

pH = 3

We want to achieve a pH of 11.0, so we need to add enough water to bring down the pH from 12.0 to 11.0. This means that we need to add enough water so that V2 becomes:

V2 = (0.01 M)(100 ml)/(1 x 10^-11 M) - Vw = 10^11 ml

Therefore, we need to add:

Vw = V2 - initial volume of solution

Vw = (10^11 ml) - (100 ml)

Vw = 99999900 ml or approximately 100 million ml or 100 cubic meters of water.

So, in order to change the pH of a solution of potassium hydroxide with a pH of 12.0 to a pH of 11.0 by adding water only, you would need to add approximately 100 million milliliters or about 100 cubic meters of water.

PLEASE ANSWER!!!


Using Graham's Law of Effusion, calculate

the approximate time it would take for

1. 0 L of argon gas to effuse, if 1. 0 L of

oxygen gas took 12. 7 minutes to effuse

through the same opening.


0. 070 minutes


0. 89 minutes


None of the other answers


14 minutes


12 minutes

Answers

The correct answer is None of the other answers.  According to Graham's Law of Effusion, the rate of effusion of a gas is inversely proportional to the square root of its molar mass. This means that a gas with a lower molar mass will effuse faster than a gas with a higher molar mass.

The equation for Graham's Law of Effusion is:
Rate of effusion of gas 1/Rate of effusion of gas 2 = √(Molar mass of gas 2/Molar mass of gas 1).

In this case, we are given the rate of effusion of oxygen gas (12.7 minutes) and asked to find the rate of effusion of argon gas.
The molar mass of oxygen gas is 32 g/mol and the molar mass of argon gas is 40 g/mol.

Plugging in the given values into the equation, we get:
Rate of effusion of argon/12.7 minutes = √(32 g/mol/40 g/mol)
Cross-multiplying and solving for the rate of effusion of argon, we get:
Rate of effusion of argon = 12.7 minutes × √(32 g/mol/40 g/mol) = 11.3 minutes.

Therefore, the approximate time it would take for 1.0 L of argon gas to effuse is 11.3 minutes. This is not one of the answer choices, so the correct answer is None of the other answers.

For more question on Graham's Law of Effusion click on

https://brainly.com/question/2199547

#SPJ11

1. 2 NH3 + 3 CuO g 3 Cu + N2 + 3 H2O In the above equation how many moles of water can be made when 36 moles of NH3 are consumed?

2. 3 Cu + 8HNO3 g 3 Cu(NO3)2 + 2 NO + 4 H2O

In the above equation how many moles of NO can be made when 86 moles of HNO3 are consumed?

3. 3 Cu + 8HNO3 --> 3 Cu(NO3)2 + 2 NO + 4 H2O

In the above equation how many moles of water can be made when 82 moles of HNO3 are consumed?


Sodium chlorate decomposes into sodium chloride and oxygen gas as seen in the equation below.

4. ­­2NaClO3­ --> 2NaCl +3O2

How many moles of NaClO3­ were needed to produce 56 moles of O2? Round your answer to the nearest whole number.

Answers

1. 36 moles NH3 - ? moles H20
First we find the number of moles for HN3 which is 1 before multiplying it times the number before the element which is 2.
We then find the moles for H20 which is 1 before multiplying it times the number before the element which is 3. We now have 3 numbers. 36 moles NH3, 2 moles NH3, and 3 moles H20. We then cross multiple the moles of NH3 which is 36 with the moles for NH3 which is 3 making it 108 before dividing it by two which gives us 54 moles H20 as our answer.

2. 86 moles HNO3 - ? moles NO
We first find the moles for HNO3 which is 1 before multiplying it with the number in front of it which is 8. We soon find the miles for NO which is 1 before multiplying it with 2. We then cross multiply We soon multiply 86 with 2 which leads to 172 before divide by 8 which leads us with 21.5 moles NO.

3. 82 moles HNO3 - ? moles H2O
We find the moles for HNO3 which is 1 and multiply it by 8. We then get the moles for H20 which is 1 before multiplying it by 4. When then cross multiply 82 with 4 which is 328 before dividing it by 8 which leaves us with 41 moles H2O.

4. 56 moles O2 - ? moles NaClO3
We find the moles for O2 which is 1 before multiplying it with 3. We then find the moles for NaClO3 which is 1 before multiplying it with 2. We The cross multiply 56 with 2 to get 112 before dividing it by 3 which gives us 37.33 which rounds to 37 miles NaClO3.

Consider a buffer solution that is 0. 50 M in NH3 and 0. 20 M in NH4Cl. For ammonia, pKb=4. 75. Calculate the pH of 1. 0 L of the solution upon addition of 30. 0 mL of 1. 0 M HCl to the original buffer solution.

Express your answer to two decimal places

Answers

The pH of 1. 0 L of the solution on addition of 30. 0 mL of 1. 0 M HCl to the original buffer solution will be 12.50.

The reaction that occurs when HCl is added to the buffer solution is:

HCl + NH₃ → NH₄⁺ + Cl⁻

The HCl reacts with NH₃ to form NH₄⁺ and Cl⁻. This will cause the concentration of NH₄⁺ in the buffer to increase and the concentration of NH₃ to decrease. However, since we started with a buffer solution, it will still be able to resist changes in pH.

To solve this problem, we will use the Henderson-Hasselbalch equation:

pH = pKb + log([NH₄⁺]/[NH₃])

where [NH₄⁺] is the concentration of the ammonium ion and [NH3] is the concentration of ammonia.

Calculate the moles of HCl added

The volume of HCl added is 30.0 mL = 0.0300 L. The concentration of HCl is 1.0 M, so the moles of HCl added are:

moles of HCl = concentration x volume = 1.0 M x 0.0300 L = 0.0300 moles

Calculate the new concentrations of NH₄⁺ and NH₃

The moles of NH₄⁺ and NH₃ in the original buffer solution can be calculated as:

moles of NH₄⁺ = 0.20 M x 1.0 L = 0.20 moles

moles of NH₃ = 0.50 M x 1.0 L = 0.50 moles

When HCl is added, it reacts with NH₃ to form NH₄⁺ and Cl⁻. The amount of NH₄⁺ produced is equal to the amount of HCl added, since the reaction is 1:1. Therefore, the new concentration of NH₄⁺ is:

[NH₄⁺] = moles of NH₄⁺ / (volume of buffer + volume of HCl added)

[NH₄⁺] = 0.20 moles / (1.0 L + 0.0300 L)

[NH₄⁺] = 0.196 M

The new concentration of NH₃ can be calculated using the buffer equation:

[NH₃] = Ka x [NH₄⁺] / [H⁺]

where Ka is the equilibrium constant for the reaction NH₄⁺ + H₂O → NH₃ + H₃O⁺, which is equal to the acid dissociation constant of NH₃, Kb. Since pKb is given as 4.75, we can calculate Kb:

Kb = 10^(-pKb) = [tex]10^{-4.75}[/tex]  = 1.78 x 10⁻⁵

Substituting the values we have:

[NH3] = Kb x [NH₄⁺] / [H⁺]

[NH3] = 1.78 x 10⁻⁵ x 0.196 M / [tex]10^{-pH}[/tex]

[NH3] = 3.49 x 10⁻⁶ / [tex]10^{-pH}[/tex]

Calculate the new pH of the buffer

Substituting the values we have into the Henderson-Hasselbalch equation:

pH = pKb + log([NH₄⁺]/[NH₃])

pH = 4.75 + log(0.196 M / (3.49 x 10⁻⁶ / [tex]10^{-pH}[/tex])))

Simplifying and solving for pH:

pH = 4.75 + log(5.61 x 10⁷) + log([tex]10^{pH}[/tex])

pH = 4.75 + 7.75 + pH

pH = 12.50

To know more about buffer solution here

https://brainly.com/question/15709146

#SPJ4

Deducing a rate law from the change in concentration over time A chemistry graduate student is studying the rate of this reaction: 2Cl2O5 (g) → 2CL2 (g) + 5O2 (g) He fills a reaction vessel with Cl20, and measures its concentration as the reaction proceeds time [Cl2O5] (milliseconds)
0 0.900 M 10 0.506 M 20 0.352 M 30 0.270 M 40 0.219 M
Use this data to answer the following questions.
Write the rate law for this reaction. rate = k ___
Calculate the value of the rate constant k.
Round your answer to 2 significant digits. Alse be sure your answer has the correct unit symbol. k = ___

Answers

a. The rate law for the reaction [tex]2Cl_{2}O_{5}[/tex](g) → [tex]2Cl_{2}[/tex](g) + [tex]5O_{2}[/tex](g) is rate = k[[tex]Cl_{2}O_{5}[/tex]]2

b. The rate constant is k = 0.0489 [tex]M^{-2}/ms^{-1}[/tex].

To write the rаte lаw for this reаction, we need to check how the rаte of the reаction chаnges for the chаnge in the concentrаtion of the reаctаnts or products. To get the rаte of the reаction, we need to find out the chаnge in concentrаtion per unit of time. So, the initiаl rаte of reаction (r) will be given by:

r = {Δ[[tex]Cl_{2}O_{5}[/tex]]/Δt}

where Δ[[tex]Cl_{2}O_{5}[/tex]] is the chаnge in concentrаtion аnd Δt is the chаnge in time.

Аs per the аbove formulа, the initiаl rаte of the reаction is:

r = {(0.900 - 0.506)/(10 - 0)} M/ms

= 0.0397 M/ms

Аs per the stoichiometry of the reаction, 2 moles of [tex]Cl_{2}O_{5}[/tex] produces 2 moles of [tex]Cl_{2}[/tex] аnd 5 moles of [tex]O_{2}[/tex]. Thus, the rаte lаw for the given reаction is:

rаte = k[Cl2O5]2

Here, the rаte constаnt is k.

Now, putting the given vаlues in the rаte lаw аnd solving for k:

k = rаte/[[tex]Cl_{2}O_{5}[/tex]]2

Now, the initiаl rаte of the reаction, rаte = 0.0397 M/ms

Аnd the concentrаtion of [tex]Cl_{2}O_{5}[/tex] аt the beginning of the reаction, [[tex]Cl_{2}O_{5}[/tex]] = 0.900 M

So,

k = 0.0397/(0.900)2

= 0.0489 [tex]M^{-2}/ms^{-1}[/tex]

Thus, the rаte lаw for the given reаction is rаte = k[[tex]Cl_{2}O_{5}[/tex]]2 аnd the rаte constаnt is k = 0.0489 [tex]M^{-2}/ms^{-1}[/tex].

Learn more about rate law and rate constant:

https://brainly.com/question/30857630

#SPJ11

The equilibrium constant, Kc, for the following reaction is 9.52×10-2 at 350 K:CH4(g) + CCl4(g) 2CH2Cl2(g)Calculate the equilibrium concentrations of reactants and product when 0.374 moles of CH4 and 0.374 moles of CCl4 are introduced into a 1.00 L vessel at 350 K.[CH4] = M[CCl4] = M[CH2Cl2] = M

Answers

The equilibrium concentrations are 0.247 M for CH4 and CCl4, and 0.254 M for CH2Cl2.

The equilibrium constant, Kc, is given by the expression:

Kc = [CH2Cl2]² / ([CH4] [CCl4])

We are given the initial concentrations of CH4 and CCl4:

[CH4] = 0.374 M
[CCl4] = 0.374 M

Let x be the change in concentration at equilibrium. The equilibrium concentrations can be expressed as:

[CH4] = 0.374 - x
[CCl4] = 0.374 - x
[CH2Cl2] = 2x

Substituting these values into the expression for Kc, we get:

9.52×10-2 = (2x)² / ((0.374 - x) (0.374 - x))

Solving for x, we get:

x = 0.127 M

Therefore, the equilibrium concentrations are:

[CH4] = 0.374 - 0.127 = 0.247 M
[CCl4] = 0.374 - 0.127 = 0.247 M
[CH2Cl2] = 2(0.127) = 0.254 M

Answer: The equilibrium concentrations are 0.247 M for CH4 and CCl4, and 0.254 M for CH2Cl2.

To know more about equilibrium concentrations, refer here:

https://brainly.com/question/13043707#

#SPJ11

a chemist carefully measures the amount of heat needed to raise the temperature of a 809.0 mg sample of from to c3h9n. the experiment shows that of heat are needed. what can the chemist report for the molar heat capacity of ? round your answer to significant digits.

Answers

the chemist can report that the molar heat capacity of  [tex]C_{3} H_{9}N[/tex]  is 134.0 J/mol·K (rounded to three significant digits).

To calculate the molar heat capacity of  [tex]C_{3} H_{9}N[/tex] , we need to know the number of moles of  [tex]C_{3} H_{9}N[/tex]  in the sample and the amount of heat absorbed by the sample. We can use the following formula to calculate the number of moles of  [tex]C_{3} H_{9}N[/tex]

n = m/M

where:

n = number of moles

m = mass of [tex]C_{3} H_{9}N[/tex] (809.0 mg)

M = molar mass of  [tex]C_{3} H_{9}N[/tex]

The molar mass of [tex]C_{3} H_{9}N[/tex]  can be calculated as follows:

M = (3 x M(C)) + (9 x M(H)) + M(N)

Using the atomic masses of the elements from the periodic table, we can calculate the molar mass of  [tex]C_{3} H_{9}N[/tex]  as follows:

M(C) = 12.01 g/mol

M(H) = 1.008 g/mol

M(N) = 14.01 g/mol

M = (3 x 12.01) + (9 x 1.008) + 14.01 = 59.11 g/mol

Now we can calculate the number of moles of  [tex]C_{3} H_{9}N[/tex]

n = 809.0 mg / 59.11 g/mol = 0.01368 mol

Next, we can use the following formula to calculate the molar heat capacity of  [tex]C_{3} H_{9}N[/tex]

Cp = q/nΔT

We are given that q = 1834 J and we need to assume a value for ΔT. Let's assume that the temperature of the sample increased by 10.0°C (which is equivalent to 10.0 K). Then we can calculate the molar heat capacity of  [tex]C_{3} H_{9}N[/tex] as follows:

Cp = 1834 J / (0.01368 mol x 10.0 K) = 134.0 J/mol·K

Learn more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

explain why the procedure for the amino acid chromatography states that you are to be careful not to touch the paper with your fingers, except along the edges.

Answers

The procedure for the amino acid chromatography states that you are to be careful not to touch the paper with your fingers, except along the edges, to prevent contamination of the paper or the sample. Chromatography is a technique used in the separation of different molecules or components of a mixture. It involves the movement of the components of a mixture through a stationary phase, which is usually a solid or liquid, in a mobile phase or a gas or liquid.

Chromatography is used in the separation and identification of amino acids, which are the building blocks of proteins. In amino acid chromatography, the stationary phase is a special paper or a silica gel-coated plate, and the mobile phase is a solvent, usually a mixture of water and an organic solvent.

When performing amino acid chromatography, it is crucial to avoid contamination of the paper or the sample with any foreign substances, such as dust, oil, or bacteria, which can interfere with the separation and identification of the amino acids. Therefore, it is essential to handle the paper with care and avoid touching it with bare hands.

The oils and sweat present on the hands can leave behind residues on the paper that can interfere with the separation process. Therefore, one should avoid touching the paper except along the edges, where there is less chance of contaminating the sample. To handle the paper, it is best to use forceps or gloves that do not leave behind any residues.

Learn more about amino acids: https://brainly.com/question/2526971

#SPJ11

Give an example of solid in solid solution.

Answers

Solid-solid solutions such as brass, bronze, and sterling silver are called alloys.

please make me brainalist and keep smiling dude

Can someone please help with this chemistry question

Answers

According to the question the mass of 12 needed to react exactly with 35 g Al is 420 g.

What is react?

React is an open-source JavaScript library created by Face book for building user interfaces. It is a declarative, efficient, and flexible JavaScript library for building user interfaces. React allows developers to create large web applications that use data and can change over time without reloading the page. It is easy to use and requires minimal coding. React is used for developing complex and interactive UIs for web and mobile applications, as well as for creating single-page applications.

The balanced equation for the reaction is:
12 mol A l + 12 mol O2 -> 13 mol Al2O3
We can calculate the mass of 12 needed to react with 35 g A l using the following equation:
Mass (12) = (35 g Al / (12 mol A l/mol 12)) x (12 mol 12/1 mol Al)
= 420 g 12
Therefore, the mass of 12 needed to react exactly with 35 g A l is 420 g.

To learn more about react
https://brainly.com/question/29245405
#SPJ1

pls i already asked for help with this but im honestly just so lost and my parents dont understand. i really need this done and ive been trying to understand it and figure it out but i cant

Answers

Answer:

3, 2, 1, 6

Explanation:

Let's do some algebra lol

Let's call coefficient for Cu(NO3)2 "a"

Let's call coefficient for K3PO4 "b"

Let's call coefficient for Cu3(PO4)2 "c"

Let's call coefficient for KNO3 "d"

Cu3(PO4)2 has 3x as many moles of Cu compared to Cu(NO3)2, so we know that 3c = a

Cu(NO3)2 has 2x as many moles of NO3 compared to KNO3, so we know that 2a = d

Repeat this process for K and PO4 --> you get equations 3b = d and 2c = b respectively

2a = d = 3b = d so 2a = 3b, let's see if a = 3, b = 2 works

plug a and b into other two equations --> c = 1, d = 6

these are all whole numbers so it works! (if they're not whole numbers than multiply every coefficient by their LCM to make it whole)

so your coefficients for each of them are 3, 2, 1, 6

Which of the following sets of words are not related? frequency, energy blackbody curve, intensity temperature, peak wavelength Doppler effect, transverse motion

Answers

Answer:

Temperature and transverse motion are not related.

Explanation:

Other Questions
a) Briefly describe the interference assay, and how it compares to the remaining four general virus ID approaches.b) Details the steps performed in diagnosing HIV, include a discussion of RT-PCR versus PCR.c) List the nucleic acid tests performed to identity RNA and DNA viruses. Compare these to the available non-nucleic acid tests. A weather forecast shows that the humidity will increase to 100% in the next couple of days. How might this affect the weather? The air pressure will decrease. The air temperature will increase. The moisture will cause more water to evaporate. The moisture will condense into precipitation Find the length of side x in simplest radical form with a rational denominator. freshly mixed concrete is not a liquid but a slurry, a semistable mixture of solids suspended in liquid. care must be taken to prevent the material from segregating, creating nonuniform and generally unsatisfactory properties. which of the following will not cause segregation to occur? American Parkinsons Disease Association Center:Parkinsons disease (PD) is a complex neurological disorder whose major characteristics are tremors, slowness of movement, and muscle rigidity. With advancing disease, patients may have trouble with balance and gait, as well as cognitive problems. Awareness of PD increased in recent years when celebrities Muhammad Ali and Michael J. Fox developed the disease.Patients with PD are commonly referred to neurologists. However, due to the complex nature of the disease and its management, it is common for neurologists themselves to refer patients to PD sub-specialists. The American Parkinsons Disease Association (APDA) is a nonprofit voluntary health agency committed to serving the Parkinson community through a comprehensive program of research, patient education, and support. The goals of APDA are: To sponsor pioneering research into the cause, diagnosis, treatment, and cure for PD. To develop a grassroots network of information and referral centers and support groups nationwide. To establish fundraising chapters in strategic areas throughout the country. To publish and distribute a quarterly newsletter, educational booklets, audio-visual and other educational and supportive materials about PD. To sponsor educational conferences for professionals, patients, caregivers, and families throughout the country. To raise public awareness and understanding of PD.The Cincinnati office of APDA is a nonprofit information and referral center for PD. The primary purpose of the center is to support and educate by counseling and providing literature to patients and individuals who are associated with the disease. The center implements positive coping skills and goals for patients, caregivers, and other health care personnel; and informs patients and caregivers of the reason and rationale for their therapies. Services are delivered to customers by telephone, mail, Internet, person-to-person contact, support group, and chapter work. The center also conducts an annual symposium, sponsored by area neurologists, hospitals, as well as pharmaceutical companies, to address hot topics such as new drugs and surgical treatments.The center employs a medical director, who is a neurologist specializing in PD, a registered nurse as project coordinator, and an assistant. The assistant herself has PD and her real-life experience enables her to empathize with customers. The center is affiliated with a local university, which provides an accountant to help the center with financial matters. The Center is regulated by the APDA and OSHA regulations. Because it is not a medical establishment, it is not subject to health department regulations. Operating funds come from grant money given by APDA and other grant money from pharmaceutical companies.The key customers are the Parkinsons patients, their caregivers, family members, support groups, and the professionals (neurologists, geriatricians and nursing homes) who work with these patients. Customers use the center for information and referrals to improve their response to the disease and overall well-being. The center responds to every client on an individual basis. APDA is the main supplier of all media materials. Pharmaceutical companies provide their drug and general information. Surgical companies and hospital supply companies also provide information on their devices.An important strategic challenge the center faces is involving community neurologists and primary care physicians outside the university system as allies in their efforts. Community neurologists often refer their complicated patients to the university hospital andits affiliated neurology clinic. However, they do so with reservations. These reasons include losing their patients to university neurologists, conflicts of interest related to pharmaceutical-sponsored clinical trials, and a general feeling that academic neurologists do not treat them with respect.Discussion Question:1. How might proper employee education, training, and development help APDA in its effort to promote/maintain quality? Make sure to find similar examples in the service industry to support your suggestions. 5. gradual: Alice was not happy with product's promise of gradual weight loss. She wanted to lose all ofher fat immediately.Definition:What clues in the sentence lead you to your definition? A music company is introducing a new line of acoustic guitars next quarter. these are the cost and revenue functions, where x represents the number of guitars to be manufactured and sold: r(x) = 120x, c(x) = 100x 1,840. the company needs to sell at least guitars for a total revenue of $______to start making a profit. Financial capital tends to move from:Select one:a. from fast-growing countries to slow-growing countries.b. more developed to less developed countries.b. from slow-growing countries to fast- growing count For computer memory 1 MB = 210 bytes, 1 GB = 210 MB and 1TB = 210 GB. How many bytes are there in 1 TB? (MB is megabyte, GB is gigabyte, TB is terabyte) Why optical microscopes are so named? 4. What value of b makes this proportiontrue?12 = 21A. B= 25C. B = 28B. B= 27D. B = 30 Which of the following was NOT one of the official articles of impeachment against Richard Nixon?A. Obstruction of justiceB. Lying under oathC. Abuse of powerD. Contempt of Congress If the length and breadth of a rectangle are 12 cm and 5 cm respectively, what will be the length of its diagonal? 100 points please help Find the quotient of 125 25.1. Rewite the division as multiplication by the reciprocal.The rewritten expression is 2. Multiply the numerators to get , and then multiply the denominators to get 3. Simplify. The quotient is Choose a fictional company that deals with the transportation of ice-cream. Research and analyze the current logistics process of the company, including the transportation modes used, the suppliers, the distribution channels, and the storage facilities. Identify the main challenges and bottlenecks in the current logistics process. Propose and evaluate alternative solutions to improve the logistics process, considering factors such as cost, efficiency, and compliance with industry regulations. Develop a comprehensive logistics plan, including a detailed description of the transportation modes, the suppliers, the distribution channels, and the storage facilities to be used. Establish a system to monitor and evaluate the performance of the logistics process and to continuously improve it. Create a ppt document summarizing your findings and recommendations, including a cost-benefit analysis of your proposed logistics plan. A rectangular block with dimensions 6.0 cm x 8.0 cm x 12.0 cm is made of aluminium of density 2700 kg m. Find the maximum pressure it can exert when placed on one of its faces on a horizontal surface. flag a nurse is teaching a newly licensed nurse about using the nursing process when caring for a client who has an acid-base imbalance. the nurse should include that the stages of the nursing process should be performed in what order? David consumes two things: gasoline(q1)and bread(q2). David's utility function isU(q1,q2)=70q10.2q20.8Let the price of gasoline bep1, the price of bread bep2, and income beY. Derive David's demand curve for gasoline. David's demand for gasoline isq1=(Properly format your expression using the tools in the palette. Hover over tools to see keyboard shortcuts. E.g., a subscript can be created with the character.) Write the LCM of the following A=a^3 b^2c and B=a^5 bc^4d , giveyour answer in exponential form