4. [0/4 Points] DETAILS PREVIOUS ANSWERS SCALCET8 16.7.507.XP. MY NOTES PRACTICE ANOTHER Evaluate the surface integral 16² F. ds for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. s F(x, y, z) = xzi + xj + y k S is the hemisphere x² + y² + z² = 16, y ≥ 0, oriented in the direction of the positive y-axis X Need Help? Read It

Answers

Answer 1

The flux of F across S is 0.

The surface integral ∫∫S F · dS is used to find the flux of the vector field F across the oriented surface S. In this case, the vector field F is given by F(x, y, z) = xy i + 4x2 j + yz k and the oriented surface S is given by z = xey, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, with upward orientation.

To evaluate the surface integral, we need to find the normal vector to the surface S. The normal vector is given by the cross product of the partial derivatives of the surface equation with respect to x and y:

∂S/∂x = <1, 0, ey>

∂S/∂y = <0, 1, xey>

N = ∂S/∂x x ∂S/∂y = <-ey, -xey, 1>

Since the surface S has an upward orientation, we need to make sure that the normal vector N points upward. We can do this by taking the dot product of N with the upward vector k:

N · k = -ey * 0 - xey * 0 + 1 * 1 = 1

Since the dot product is positive, the normal vector N points upward and we can use it in the surface integral.

Next, we need to substitute the surface equation z = xey into the vector field F to get F(x, y, xey) = xy i + 4x2 j + xyey k.

Now we can evaluate the surface integral:

∫∫S F · dS = ∫∫S (xy i + 4x2 j + xyey k) · (-ey i - xey j + k) dS

= ∫∫S (-xyey - 4x3ey + xyey) dS

= ∫∫S 0 dS

= 0

Therefore, the flux of F across S is 0.

Learn more about Integral

brainly.com/question/18125359

#SPJ4


Related Questions

A hypothesis will be used to test that a population mean equals 10 against the alternative that the population mean is greater than 10 with unknown variance. What is the critical value for the test statistic T0 for the following significance levels?
(a) α = 0.01 and n = 20 (b) α = 0.05 and n = 12 (c) α = 0.10 and n = 15

Answers

The critical values for the test statistic T₀ are as follows:(a) For α = 0.01 and n = 20, T₀ ≥ 2.861 (b) For α = 0.05 and n = 12, T₀ ≥ 1.796 (c) For α = 0.10 and n = 15, T₀ ≥ 1.345

We want to determine the appropriate value from the t-conveyance in light of the importance level () and opportunity levels (df) associated with the example size (n) in order to determine the fundamental incentive for the test measurement T0.

df = n - 1 is the probability of testing a population mean with unclear variation.

(a) α = 0.01 and n = 20:

For α = 0.01 and n = 20, the degrees of chance (df) would be 20 - 1 = 19. We need to find the fundamental worth from the t-dissemination for a one-followed test with a significance level of 0.01 and 19 degrees of chance. Let's refer to this fundamental worth as t1.

Using a t-table or factual programming, we discover that, for df = 19 and t1 = 0.01, the approximate value is 2.861.

(b) α = 0.05 and n = 12:

The levels of opportunity (df) would be 12 - 1 = 11 for n = 12 and  = 0.05. For a one-followed test with 11 levels of opportunity and an importance level of 0.05, we want to determine the basic worth from the t-conveyance. Could we mean this essential worth as t₁₋α.

Using a t-table or factual programming, we discover that, for df = 11 and t1 = 0.05, the approximate value is 1.796.

(c) α = 0.10 and n = 15:

For α = 0.10 and n = 15, the degrees of chance (df) would be 15 - 1 = 14. We need to find the essential worth from the t-dispersal for a one-followed test with a significance level of 0.10 and 14 degrees of chance. We ought to refer to this fundamental worth as t1.

Using a t-table or real programming, we find that t₁₋α for α = 0.10 and df = 14 is generally 1.345.

As a result, the fundamental characteristics of the test measurement T0 are as follows:

(a) For α = 0.01 and n = 20, T₀ ≥ 2.861

(b) For α = 0.05 and n = 12, T₀ ≥ 1.796

(c) For α = 0.10 and n = 15, T₀ ≥ 1.345

To know more about probability refer to

https://brainly.com/question/32117953

#SPJ11

Find the zeros of the function: f(x) = 3x^3 - 4x^2 +8x+8

Answers

To find the zeros of the function f(x) = 3x^3 - 4x^2 +8x+8, we need to solve for x when f(x) = 0.

One way to do this is to use synthetic division. We'll start by trying x = 1 as a possible zero:

1 | 3 -4 8 8
| 3 -1 7
| -----------
| 3 -1 7 15

Since the remainder is not zero, x = 1 is not a zero of the function. Let's try x = -1:

-1 | 3 -4 8 8
| -3 7 -15
| -----------
| 3 -7 15 -7

Since the remainder is zero, x = -1 is a zero of the function. We can now factor out (x + 1) from the polynomial using long division or synthetic division:

(x + 1)(3x^2 - 7x + 7)

The remaining quadratic factor does not have any real zeros, so the zeros of the function f(x) are:

x = -1 (with a multiplicity of 1)

find the scalar and vector projections of b onto a. a = −8, 15 , b = 3, 5

Answers

The scalar projection of vector b onto vector a is -2.3077, and the vector projection of b onto a is (-18.4615, 34.6154).

To find the scalar projection of b onto a, we use the formula:

Scalar Projection = (b · a) / ||a|| where · represents the dot product and ||a|| represents the magnitude of vector a. The dot product of a and b is (-8 * 3) + (15 * 5) = -24 + 75 = 51, and the magnitude of a is √((-8)^2 + 15^2) = √(64 + 225) = √289 = 17. Therefore, the scalar projection is (51 / 17) = -2.3077.To find the vector projection of b onto a, we use the formula:

Vector Projection = Scalar Projection * (a / ||a||)

where a / ||a|| represents the unit vector in the direction of a. Dividing vector a by its magnitude, we get a unit vector in the direction of a as (-8 / 17, 15 / 17). Multiplying the scalar projection by the unit vector, we get the vector projection as (-2.3077 * (-8 / 17), -2.3077 * (15 / 17)) = (-18.4615, 34.6154).Therefore, the scalar projection of b onto a is -2.3077, and the vector projection of b onto a is (-18.4615, 34.6154).

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

Prove the following by using mathematical induction.
2) 1 1 1 1.2.3* .5 nn + 3) n(n + 1)(n+2) 4(n + 1)(N + 2)

Answers

To prove the given statement 2) and 3) by mathematical induction, we will show that it holds true for the base case, and then prove the inductive step to demonstrate that it holds true for all subsequent cases.

a) Statement 2: 1 + 2 + 3 + ... + n = n(n+1)/2

Base Case: For n = 1, the left-hand side (LHS) is 1, and the right-hand side (RHS) is (1)(1+1)/2 = 1. Thus, the statement holds true for the base case.

Inductive Step: Assume that the statement is true for some arbitrary positive integer k. That is, 1 + 2 + 3 + ... + k = k(k+1)/2.

We need to prove that it holds true for k+1 as well.

By adding (k+1) to both sides of the assumed equation, we have:

1 + 2 + 3 + ... + k + (k+1) = k(k+1)/2 + (k+1) = (k+1)(k+2)/2.

Hence, the statement holds true for k+1, which completes the inductive step. By mathematical induction, the statement is proven for all positive integers.

b) Statement 3: n(n+1)(n+2) = 4(n+1)(n+2)

Base Case: For n = 1, the LHS is (1)(1+1)(1+2) = 6, and the RHS is 4(1+1)(1+2) = 4(2)(3) = 24. Thus, the statement holds true for the base case.

Inductive Step: Assume that the statement is true for some arbitrary positive integer k. That is, k(k+1)(k+2) = 4(k+1)(k+2).

We need to prove that it holds true for k+1 as well.

By multiplying both sides of the assumed equation by (k+1), we have:

(k+1)k(k+1)(k+2) = (k+1)4(k+1)(k+2).

Simplifying both sides, we get:

(k+1)(k+1)(k+2) = 4(k+1)(k+2).

(k+1)(k+2) = 4(k+2).

k² + 3k + 2 = 4k + 8.

k² - k - 6 = 0.

(k-3)(k+2) = 0.

Therefore, the statement holds true for k+1 as well. By mathematical induction, the statement is proven for all positive integers.

In both cases, we have shown that the statement holds true for the base case and demonstrated that it holds true for the next case assuming it is true for the previous case. Therefore, the statements are proven by mathematical induction.

To learn more about Mathematical Induction

brainly.com/question/29503103

#SPJ11

A rectangular box with a square base and open top is the hold 1000 in³. We wish to use the least amount of material to construct this box in the given shape. What are the dimensions of the box that uses the least material.

Answers

Let s be the side of the square base and h be the height of the rectangular box. A rectangular box with a square base and open top holds 1000 in³. Let us first write the volume of the rectangular box with a square base and open top using the given data. The volume of the rectangular box with a square base and open top= 1000 in³.

Area of the square base= side * side = s²∴ Volume of the rectangular box with a square base and open top= s²h.

The least amount of material to construct this box in the given shape. The least amount of material is used when the surface area of the rectangular box is minimized. The surface area of a rectangular box is given as S.A = 2lw + 2lh + 2whS.A = 2sh + 2s² + 2shS.A = 2sh + 2sh + 2s²S.A = 4sh + 2s².

Using the formula for volume and substituting the surface area equation we can write h as h = (1000/s²) / 2s + s / 2h = (500/s) + s/2.

Now, we can express the surface area in terms of s only.S.A = 4s (500/s + s/2) + 2s²S.A = 2000/s + 5s²/2.

Differentiate the expression for surface area with respect to s to find its minimum value. dS.A/ds = -2000/s² + 5s/2.

Equating the above derivative to zero and solving for s: -2000/s² + 5s/2 = 0-2000/s² = -5s/2 (multiply by s²)-2000 = -5s³/2 (multiply by -2/5)s³ = 800/3s = (800/3)1/3.

Thus, the side of the square is s = 8.13 (approx.) inches (rounded off to two decimal places)

Now that we have s, we can find the value of h.h = (500/s) + s/2h = (500/8.13) + 8.13/2h = 61.35 cubic inches (approx.)

Therefore, the dimensions of the box that uses the least material are 8.13 in by 8.13 in by 61.35 in.

Learn more about surface area equation here ;

https://brainly.com/question/14697595

#SPJ11

Given the following ANOVA table:
Source df SS MS F
Regression 1 1,300 1,300 34.00
Error 17 650.0 38.24 Total 18 1,950 a. Determine the coefficient of determination. (Round your answer to 3 decimal places.) Coefficient of determination b. Assuming a direct relationship between the variables, what is the correlation coefficient? (Round your answer to 2 decimal places.) Coefficient of correlation b. Assuming a direct relationship between the variables, what is the correlation coefficient? (Round your answer to 2 decimal places.) Coefficient of correlation c. Determine the standard error of estimate. (Round your answer to 2 decimal places.) Standard error of estimate

Answers

(a)The coefficient of determination is approximately 0.667.

(b)The correlation coefficient is approximately 0.82.

(c)The standard error of estimate is approximately 6.18.

What is the regression?

The regression in the given ANOVA table represents the analysis of variance for the regression model. The regression model examines the relationship between the independent variable(s) and the dependent variable.

a)The coefficient of determination, denoted as [tex]R^2[/tex], is calculated as the ratio of the regression sum of squares (SSR) to the total sum of squares (SST). From the given ANOVA table:

SSR = 1,300

SST = 1,950

[tex]R^2 = \frac{SSR}{SST }\\\\= \frac{1,300}{1,950}\\\\ =0.667[/tex]

Therefore, the coefficient of determination is approximately 0.667.

b) Assuming a direct relationship between the variables, the correlation coefficient (r) is the square root of the coefficient of determination ([tex]R^2[/tex]). Taking the square root of 0.667:

[tex]r = \sqrt{0.667}\\r =0.817[/tex]

Therefore, the correlation coefficient is approximately 0.82.

c) The standard error of estimate (SE) provides a measure of the average deviation of the observed values from the regression line. It can be calculated as the square root of the mean square error (MSE) from the ANOVA table.

In the ANOVA table, the mean square error (MSE) is given as 38.24 under the "Error" column.

[tex]SE =\sqrt{MSE}\\\\SE= \sqrt{38.24}\\\\SE=6.18[/tex]

Therefore, the standard error of estimate is approximately 6.18.

To learn more about the regression from the link

https://brainly.com/question/25987747

#SPJ4

Hello,
Can you please help with the problem step by step also with
some side notes?
Thank you
1) Determine whether the series is absolutely convergent, conditionally 00 convergent or divergent: (-1)+2 (n + 1)2 n=1

Answers

The given series is (-1) + 2(n + 1)^2, where n starts from 1 and goes to infinity. The given series is divergent.

To determine whether the series is absolutely convergent, conditionally convergent, or divergent, we need to analyze the behavior of the terms as n approaches infinity.

First, let's consider the absolute value of the terms by ignoring the sign:

|(-1) + 2(n + 1)^2| = 2(n + 1)^2 - 1

As n approaches infinity, the dominant term in the expression is (n + 1)^2. So, let's focus on that term:

(n + 1)^2

Expanding this term gives us:

n^2 + 2n + 1

Now, let's substitute this back into the absolute value expression:

2(n + 1)^2 - 1 = 2(n^2 + 2n + 1) - 1
= 2n^2 + 4n + 2 - 1
= 2n^2 + 4n + 1

As n approaches infinity, the dominant term in this expression is 2n^2. The other terms (4n + 1) become insignificant compared to 2n^2.

Now, let's focus on the term 2n^2:

2n^2

As n approaches infinity, the term 2n^2 also approaches infinity. Since the series contains this term, it diverges.

Therefore, the given series (-1) + 2(n + 1)^2 is divergent.

When analyzing the convergence of series, we often consider the absolute value of terms to simplify the analysis. Absolute convergence refers to the convergence of the series when considering only the magnitudes of the terms. Conditional convergence refers to the convergence of the series when considering both the magnitudes and the signs of the terms. In this case, since the series is divergent, we do not need to distinguish between absolute convergence and conditional convergence.

To know more about convergence of series, visit:
brainly.com/question/28144066

#SPJ11

Consider the time series xt = Bit + B2 + Wt where B1 and B2 are known constants and wt is a white noise process with variance oz. a. Find the mean function for yt = xt - Xt-1 b. Find the autocovarianc

Answers

The mean function for yt, which is defined as the difference between xt and Xt-1, can be calculated as E(yt) = B1 + B2.

a. To find the mean function for yt, we take the expectation of yt:

E(yt) = E(xt - Xt-1)

= E(B1 + B2 + Wt - Xt-1)

= B1 + B2 - E(Xt-1) (since E(Wt) = 0)

= B1 + B2

b. The autocovariance function for yt depends on the time lag, denoted by h. If h is 0, the autocovariance is the variance of yt, which is given as o^2 since Wt is a white noise process with variance o^2. If h is not 0, the autocovariance is 0 because the white noise process is uncorrelated at different time points. Therefore, the autocovariance function for yt is given by:

Cov(yt, yt+h) = o^2 for h = 0

Cov(yt, yt+h) = 0 for h ≠ 0

In this case, the autocovariance is constant at o^2 for a lag of 0 and 0 for any other non-zero lag, indicating that there is no correlation between consecutive observations of yt except at a lag of 0.

Learn more about function here:

https://brainly.com/question/31062578

#SPJ11

Find zα/2 for 80%, 98%, and 99% confidence levels. (It may help to draw the curve and identify α/2 in each tail.)

Answers

The zα/2 for 80%, 98%, and 99% confidence levels are 1.282, 2.326 and 2.576, respectively

How to determine the zα/2 for 80%, 98%, and 99% confidence levels

From the question, we have the following parameters that can be used in our computation:

80%, 98%, and 99% confidence levels

The critical values for all confidence levels are fixed and constant values that can be determined using critical table

From the critical table of confidence levels, we have

zα/2 for 80% confidence level = 1.282zα/2 for 98% confidence level = 2.326zα/2 for 99% confidence level = 2.576

Read more about confidence level at

https://brainly.com/question/20309162

#SPJ1




(1 point) Solve the system 4 2 -3 dx dt = -10 -4 -2 with x(0) = [:) -3 Give your solution in real form. X 1 - X 2 - An ellipse with clockwise orientation 1. Describe the trajectory.

Answers

The solution to the system dx/dt = -10x - 4y - 2 and dy/dt = 4x + 2y with initial condition x(0) = 1, y(0) = -3 is an ellipse with clockwise orientation.

To solve the system, we can rewrite it in matrix form as dX/dt = AX, where X = [x, y] and A is the coefficient matrix [-10 -4; 4 2].

Next, we find the eigenvalues and eigenvectors of matrix A. Solving for the eigenvalues λ, we have det(A - λI) = 0, where I is the identity matrix. This gives us the characteristic equation (-10 - λ)(2 - λ) - (-4)(4) = 0, which simplifies to λ^2 - 8λ - 16 = 0. Solving this quadratic equation, we find λ = 4 ± √32.

For each eigenvalue, we find the corresponding eigenvector by solving the system (A - λI)v = 0. The eigenvectors are [1, -2] for λ = 4 + √32 and [1, -2] for λ = 4 - √32.

The general solution is X(t) = c₁e^(λ₁t)v₁ + c₂e^(λ₂t)v₂, where c₁ and c₂ are constants. Substituting the values, we have X(t) = c₁e^((4+√32)t)[1, -2] + c₂e^((4-√32)t)[1, -2].

The trajectory of the solution represents an ellipse with clockwise orientation due to the presence of complex eigenvalues (λ = 4 ± √32). The eigenvectors determine the directions of the axes of the ellipse. Therefore, the solution exhibits an elliptical motion in the x-y plane.

To learn more about matrix click here

brainly.com/question/29132693

#SPJ11

Let f(x) = r' - 8r-4. a) Find the intervals on which f is increasing or decreasing. b) Find the local maximum and minimum values off. c) Find the intervals of concavity and the inflection points. d) Use the information from a c to make a rough sketch of the graph.

Answers

a) The function f(x) = r' - 8r-4 is increasing on the intervals (-∞, r') and (r', ∞), and decreasing on the interval (r', r'').

b) The local maximum and minimum values occur at critical points where f'(x) = 0.

c) To find the intervals of concavity and inflection points, we analyze the second derivative f''(x).

d) Based on the information obtained, we can sketch a graph that shows the increasing and decreasing intervals, local maximum and minimum points, and concave-up and concave-down regions.

a) To determine the intervals of increasing and decreasing, we need to find the values of x where the derivative f'(x) = 0 or does not exist. These points are known as critical points. The function is increasing on intervals where the derivative is positive and decreasing where the derivative is negative. The intervals are determined by finding the values of x that satisfy f'(x) > 0 or f'(x) < 0.

b) To find the local maximum and minimum values, we need to identify the critical points. These occur when the derivative f'(x) = 0. By solving the equation f'(x) = 0, we can find the x-values of the critical points. The corresponding y-values of these points will give us the local maximum and minimum values of the function.

c) The intervals of concavity are determined by analyzing the second derivative f''(x). If f''(x) > 0, the function is concave up, and if f''(x) < 0, the function is concave down. Inflection points occur where the concavity changes, meaning where f''(x) changes sign from positive to negative or vice versa.

d) Based on the information obtained from parts a, b, and c, we can sketch a rough graph of the function f(x). We can plot the increasing and decreasing intervals on the x-axis, indicate the local maximum and minimum points on the graph, and mark the intervals of concavity. By incorporating this information, we can create a visual representation of the behavior of the function.

Learn more about values here:

https://brainly.com/question/30145972

#SPJ11

(1 point) Find the linearization of the function f(x, y) = √√/121 - 5x² – 4y² at the point (-1, 5). L(x, y) = Use the linear approximation to estimate the value of f(-1.1, 5.1) =

Answers

The linearization of the function [tex]f(x,y)=\sqrt{121-5x^2-4y^2}[/tex] at the point (-1, 5) can be found by evaluating the function and its partial derivatives at the given point. Using the linear approximation, we can estimate the value of f(-1.1, 5.1) as [tex]6\sqrt6+\frac{5}{\sqrt6}(-1.1+1)+(\frac{-20}{\sqrt6})(5.1-5)[/tex].

To find the linearization of the function [tex]f(x,y)=\sqrt{121-5x^2-4y^2}[/tex] at the point (-1, 5), we first need to evaluate the function and its partial derivatives at the given point. Evaluating f(-1, 5), we have:

[tex]f(-1.5)=\sqrt{121-5(-1)^2-4(5)^2}\\\\=6\sqrt6[/tex]

Next, we calculate the partial derivatives of f(x, y) with respect to x and y:

[tex]\frac{\partial f}{\partial x}=\frac{-10x}{2\sqrt{121-5x^2-4y^2}}\\=\frac{5}{\sqrt6}\\\\\frac{\partial f}{\partial y}=\frac{-8y}{2\sqrt{121-5x^2-4y^2}}\\=\frac{-20}{\sqrt6}\\\\[/tex]

Using these values, the linearization L(x, y) is given by:

[tex]L(x,y)=f(-1,5)+\frac{\partial f}{\partial x} \times (x-(-1))+\frac{\partial f}{\partial y} \times (y-5)\\=6\sqrt6+\frac{5}{\sqrt6}(x+1)+\frac{-20}{\sqrt6}(y-5)[/tex]

To estimate the value of f(-1.1, 5.1), we can use the linear approximation:

f(-1.1, 5.1) ≈ L(-1.1, 5.1)

[tex]=6\sqrt6+\frac{5}{\sqrt6}((-1.1)+1)+\frac{-20}{\sqrt6}(5.1-5)[/tex]. Calculating this expression, we can find the estimated value of f(-1.1, 5.1).

Learn more about partial derivatives here:

https://brainly.com/question/28751547

#SPJ11

A net of a rectangular pyramid is shown in the figure.

A net of a triangular prism with base dimensions of 4 inches by 6 inches. The larger triangular face has a height of 4 inches. The smaller triangular face has a height of 4.6 inches.

What is the surface area of the pyramid?

33.2 in2
66.4 in2
90.4 in2
132.8 in2

Answers

The surface area of the rectangular pyramid is 66.4 square inches.

To calculate the surface area of the rectangular pyramid, we need to determine the areas of all its faces and then sum them up.

The rectangular pyramid has five faces: one rectangular base and four triangular faces.

The rectangular base has dimensions 4 inches by 6 inches, so its area is 4 inches * 6 inches = 24 square inches.

The larger triangular face has a base of 6 inches and a height of 4 inches, so its area is (1/2) * 6 inches * 4 inches = 12 square inches.

The smaller triangular face has a base of 4 inches and a height of 4.6 inches, so its area is (1/2) * 4 inches * 4.6 inches = 9.2 square inches.

Since there are two of each triangular face, the total area of the four triangular faces is 2 * (12 square inches + 9.2 square inches) = 42.4 square inches.

Finally, we add up the areas of all the faces: 24 square inches (rectangular base) + 42.4 square inches (triangular faces) = 66.4 square inches.

Therefore, the surface area of the rectangular pyramid is 66.4 square inches.

For more questions on surface area

https://brainly.com/question/30331355

#SPJ8

Answer:

66.4

Step-by-step explanation:

Determine the limit of the sequence or state that the sequence diverges. 2 an = 5 n² (Use symbolic notation and fractions where needed. Enter DNE if the sequence diverges.) lim an = n→[infinity]

Answers

To determine the limit of the sequence an = 5n² as n approaches infinity, we can observe the behavior of the terms as n becomes larger and larger.

As n increases, the term 5n² also increases, and it grows without bound. There is no specific value that the terms approach or converge to as n goes to infinity. Therefore, we can say that the sequence diverges.

Symbolically, we can represent this as:

lim an = DNE (as n approaches infinity).

In other words, the limit of the sequence does not exist since the terms of the sequence do not approach a specific value as n becomes infinitely large.

Learn more about sequence here: brainly.com/question/32515455

#SPJ11

The lengths of two sides of a triangle are 2x² - 10x + 6 inches and x²-x-4 inches. If the perimeter of the triangle is 3x² - 7x + 2 inches, find the length of the third side.
[Hint: draw and label a picture]​

Answers

Answer:

Length of third side = 4x inches

Step-by-step explanation:

The perimeter of a triangle is the sum of the lengths of its three sides.

Step 1:  First we need to add the two sides we have and simplify:

2x^2 - 10x + 6 + x^2 - x - 4

(2x^2 + x^2) + (-10x - x) + (6 - 4)

3x^2 - 11x + 2

Step 2:  Now, we need to subtract this from the perimeter to find the length of the third side:

Third side = 3x^2 - 7x + 2 - (3x^2 - 11x + 2)

Third side = 3x^2 - 7x + 2 - 3x^2 + 11x - 2

Third side = 4x

Thus, the length of the third side is 4x inches

Optional Step 3:  We can check the validity of our answer by seeing if the sum of the lengths of the three sides equals the perimeter we're given

3x^2 - 7x + 2 = (2x^2 - 10x + 6) + (x^2 - x - 4) + (4x)

3x^2 - 7x + 2 = (2x^2 + x^2) + (-10x - x + 4x) + (6 - 4)

3x^2 - 7x + 2 = 3x^2 + (-11x + 4x) + 2

3x^2 - 7x + 2 = 3x^2 - 7x + 2

Thus, we've correctly found the length of the third side.

I attached a picture of a triangle that shows the info we're given and the answer we found.

A sales manager for an advertising agency believes that there is a relationship between the number of contacts that a salesperson makes and the amount of sales dollars earned. The following data were collected:
Number of Contacts Sales Dollars Earned (thousands)
12 9.3
8 5.6
5 4.1
11 8.9
9 7.2

Answers

The correlation coefficient between the number of contacts made and sales dollars earned is approximately -0.1166, suggesting a weak negative correlation.

To analyze the relationship between the number of contacts made and the amount of sales dollars earned, we can create a scatter plot and calculate the correlation coefficient.

Based on the given data:

Number of Contacts (x): 12, 8, 5, 11, 9

Sales Dollars Earned (y): 9.3, 5.6, 4.1, 8.9, 7.2

To calculate the correlation coefficient, we need to compute the following:

Calculate the mean of x and y:

Mean of x (X) = (12 + 8 + 5 + 11 + 9) / 5 = 9

Mean of y (Y) = (9.3 + 5.6 + 4.1 + 8.9 + 7.2) / 5 = 7.42

Calculate the deviation of x and y from their means:

Deviation of x (xᵢ - X): 3, -1, -4, 2, 0

Deviation of y (yᵢ - Y): 1.88, -1.82, -3.32, 1.48, -0.22

Calculate the product of the deviations:

Product of deviations (xᵢ - X) * (yᵢ - Y):

3 * 1.88, -1 * -1.82, -4 * -3.32, 2 * 1.48, 0 * -0.22

5.64, 1.82, -13.28, 2.96, 0

Calculate the sum of the products of deviations:

Sum of products of deviations = 5.64 + 1.82 - 13.28 + 2.96 + 0 = -2.86

Calculate the squared deviations of x and y:

Squared deviation of x ((xᵢ - X)^2): 9, 1, 16, 4, 0

Squared deviation of y ((yᵢ - Y)^2): 3.5344, 3.3124, 11.0224, 2.1904, 0.0484

Calculate the sum of squared deviations:

Sum of squared deviations of x = 9 + 1 + 16 + 4 + 0 = 30

Sum of squared deviations of y = 3.5344 + 3.3124 + 11.0224 + 2.1904 + 0.0484 = 20.1076

Calculate the correlation coefficient (r):

r = (sum of products of deviations) / sqrt((sum of squared deviations of x) * (sum of squared deviations of y))

r = -2.86 / sqrt(30 * 20.1076)

r ≈ -2.86 / sqrt(603.228)

r ≈ -2.86 / 24.566

r ≈ -0.1166 (rounded to four decimal places)

To know more about correlation coefficient,

https://brainly.com/question/29978658

#SPJ11














Find the area of the shaded region enclosed by y=2x2-x2 - 6x and y=-*.26% Set up the integral that gives the area of the shaded region. Select the correct choice below, and fill in the answer boxes wi

Answers

The area of the shaded region, Area = ∫[-x^2 + 6.26x] dx from x = 0 to x = 5.74

setting up an integral that represents the area between the two curves.

To find the points of intersection between the curves y = 2x^2 - x^2 - 6x and y = -0.26x, we set the equations equal to each other:

2x^2 - x^2 - 6x = -0.26x

Simplifying, we have:

x^2 - 6x + 0.26x = 0

x^2 - 5.74x = 0

x(x - 5.74) = 0

x = 0 or x = 5.74

The shaded region is bounded by the x-values 0 and 5.74. To find the area, we integrate the difference between the curves over this interval:

Area = ∫[(-0.26x) - (2x^2 - x^2 - 6x)] dx from x = 0 to x = 5.74

Simplifying the integrand, we get:

Area = ∫[-x^2 + 6x - 0.26x] dx from x = 0 to x = 5.74

Area = ∫[-x^2 + 6.26x] dx from x = 0 to x = 5.74

Evaluating the integral, we can find the numerical value of the area.

To learn more about interval click here

brainly.com/question/11051767

#SPJ11

Find dw/ds and əw/åt using the appropriate Chain Rule. Values Function = y3 - 10x2y y x = es, y = et W s = -5, t = 10 aw as = dw E Evaluate each partial derivative at the given values of s and t. aw

Answers

To find dw/ds and dw/dt using the Chain Rule, we need to differentiate the function w with respect to s and t, respectively. Given the function w = y^3 - 10x^2y and the values s = -5 and t = 10, we can proceed as follows:

(a) Finding dw/ds:

Using the Chain Rule, we have dw/ds = (dw/dx) * (dx/ds) + (dw/dy) * (dy/ds).

Taking the partial derivatives, we have:

dw/dx = -20xy

dx/ds = e^s

dw/dy = 3y^2 - 10x^2

dy/ds = e^t

Substituting the values s = -5 and t = 10 into the derivatives, we can evaluate dw/ds.

(b) Finding dw/dt:

Using the Chain Rule, we have dw/dt = (dw/dx) * (dx/dt) + (dw/dy) * (dy/dt).

Taking the partial derivatives, we have:

dw/dx = -20xy

dx/dt = e^s

dw/dy = 3y^2 - 10x^2

dy/dt = e^t

Substituting the values s = -5 and t = 10 into the derivatives, we can evaluate dw/dt.

In summary, to find dw/ds and dw/dt using the Chain Rule, we differentiate the function w with respect to s and t, respectively, by applying the appropriate partial derivatives. By substituting the given values of s and t into the derivatives, we can evaluate dw/ds and dw/dt.

To learn more about Chain Rule : brainly.com/question/30764359

#SPJ11

Find the absolute maximum and minimum values of the following function on the given interval. Then graph the function.
g(x)=5−|t|; −1≤t≤6

Answers

The absolute maximum value of the function g(x) = 5 - |t| on the interval -1 ≤ t ≤ 6 is 4, achieved at t = -1. The absolute minimum value is -1, achieved at t = 6.

The function g(x) = 5 - |t| is defined on the interval -1 ≤ t ≤ 6. To find the absolute maximum and minimum values, we need to evaluate the function at its critical points and endpoints.

First, let's examine the endpoints of the interval. When t = -1, g(-1) = 5 - |-1| = 4. Similarly, when t = 6, g(6) = 5 - |6| = -1. Therefore, the function takes its minimum value of -1 at t = 6 and its maximum value of 4 at t = -1.

Next, we need to find the critical points, which occur where the derivative of the function is either zero or undefined. Taking the derivative of g(t) with respect to t, we get g'(t) = -1 if t < 0, and g'(t) = 1 if t > 0. However, at t = 0, the derivative is undefined.

Since the interval does not include t = 0, we can ignore the critical point. Hence, the absolute maximum value of g(x) = 5 - |t| is 4, attained at t = -1, and the absolute minimum value is -1, attained at t = 6.

Graphically, the function will be a V-shaped curve with the vertex at (0, 5). It will have a slope of -1 for t < 0 and a slope of 1 for t > 0. The graph will start at (6, -1) and end at (-1, 4), forming a downward sloping line on the left side and an upward sloping line on the right side.

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

A researcher measured the average daily gains (in kg/day) of 20 beef cattle; typical values were : 1.39, 1.57, 1.44,.... the mean of the data was 1.461 and the sd was 0.178
Express the mean and SD in Ib/day.
Calculate the coefficient of variation when the data are expressed in kg/day and in lb/day

Answers

The average daily gain of 20 beef cattle was measured, with typical values ranging from 1.39 kg/day to 1.57 kg/day. The mean of the data was 1.461 kg/day, and the standard deviation (SD) was 0.178 kg/day.

To express the mean and SD in lb/day, we need to convert the values from kg/day to lb/day. Since 1 kg is approximately 2.20462 lb, the mean can be calculated as 1.461 kg/day * 2.20462 lb/kg ≈ 3.22 lb/day. Similarly, the SD can be calculated as 0.178 kg/day * 2.20462 lb/kg ≈ 0.39 lb/day.

Now, to calculate the coefficient of variation (CV), we divide the SD by the mean and multiply by 100 to express it as a percentage. In this case, when the data are expressed in kg/day, the CV is (0.178 kg/day / 1.461 kg/day) * 100 ≈ 12.18%. When the data are expressed in lb/day, the CV is (0.39 lb/day / 3.22 lb/day) * 100 ≈ 12.11%. Thus, the coefficient of variation remains similar regardless of the unit of measurement used.

Learn more about multiply here: https://brainly.com/question/30875464

#SPJ11

Find an equation of the line that contains the given pair of points (-11,7).-9.-5) The equation of the line is (Simplify your answer Type your answer in slope-intercept form Type integer or a ra fract

Answers

The equation of the line that contains the points (-11,7) and (-9,-5) is

y = -6x - 59.

To find the equation of a line that contains the given pair of points (-11,7) and (-9,-5), we can use the slope-intercept form of a linear equation,

y = mx + b, where m represents the slope of the line and b represents the y-intercept.

First, let's calculate the slope (m) using the formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex].

Substituting the values, we have: m = (-5 - 7) / (-9 - (-11)) = -12 / 2 = -6.

Now, we can choose one of the given points (let's use (-11,7)) and substitute it into the equation y = mx + b to solve for b.

Substituting the values, we get: 7 = -6(-11) + b.

Simplifying the equation, we have: 7 = 66 + b.

Solving for b, we get: b = -59.

Therefore, the equation of the line in slope-intercept form is: y = -6x - 59.

Learn more about equation:

https://brainly.com/question/2972832

#SPJ11

a distribution of values is normal with a mean of 80.1 and a standard deviation of 46.find p82, which is the score separating the bottom 82% from the top 18%.

Answers

To find the score that separates the bottom 82% from the top 18% in a normal distribution with a mean of 80.1 and a standard deviation of 46, we need to find the corresponding z-score and then convert it back to the original score using the formula x = μ + zσ. Therefore, the score that separates the bottom 82% from the top 18% is approximately 123.24.

In a normal distribution, the area under the curve represents the probability of obtaining a value below a certain point. To find the score that separates the bottom 82% from the top 18%, we need to find the z-score that corresponds to the 82nd percentile.

The z-score represents the number of standard deviations an observation is from the mean. To find the z-score, we can use a standard normal distribution table or a statistical calculator.

For the 82nd percentile, the area under the curve to the left of the z-score is 0.82. Using the standard normal distribution table, we can find the z-score corresponding to this area, which is approximately 0.94.

To convert the z-score back to the original score, we use the formula x = μ + zσ, where x is the score, μ is the mean, z is the z-score, and σ is the standard deviation.

Using the given values, we can calculate the score separating the bottom 82% from the top 18%:

x = 80.1 + 0.94 * 46

x ≈ 123.24

Therefore, the score that separates the bottom 82% from the top 18% is approximately 123.24.

Learn more about normal distribution here:

https://brainly.com/question/31327019

#SPJ11


please can you tell me solution of e
1. Consider the following function: 3x - 5y = 15. a) What type of function is this? b) What is the independent variable? c) What is the dependent variable? d) Calculate the slope. e) Describe the slop

Answers

The slope of the linear function 3x - 5y = 15 is 3/5. It represents the rate of change, indicating that for every 1 unit increase in x, y increases by 3/5 units.

What is linear function?

a) A linear function is a mathematical function that can be represented by a straight line on a graph. It is a function of the form:

f(x) = mx + b

b) The independent variable in this function is 'x'.

c) The dependent variable in this function is 'y'.

d) To calculate the slope of the function, we need to rearrange the equation into the slope-intercept form, which is y = mx + b, where 'm' represents the slope. Let's rearrange the equation:

3x - 5y = 15

Subtract 3x from both sides:

-5y = -3x + 15

Divide both sides by -5 to isolate 'y':

y = (3/5)x - 3

Comparing the equation with the slope-intercept form, we can see that the coefficient of 'x' is the slope. Therefore, the slope of the function is 3/5.

e) The slope, 3/5, represents the rate of change of 'y' with respect to 'x'. It indicates that for every increase of 1 unit in 'x', 'y' increases by 3/5 units. The slope is positive, indicating that the function has a positive slope, meaning that as 'x' increases, 'y' also increases.

Learn more about linear function

https://brainly.com/question/29205018

#SPJ4

How many different triangles can be drawn that have two side lengths of 4cm and a 45° angle.
O No triangle
O One unique triangle
Exactly 2 triangles
O Many triangles

Answers

There are exactly two unique triangles that can be created with two side lengths of 4 cm and a 45° angle: one is a 45-45-90 isosceles triangle, and the other is a triangle where one of the 4 cm sides is opposite the 45° angle.

The triangles

The exact shape of the second triangle depends on the length of the third side.

The other two angles depend on the length of the third side, and there's only one unique triangle for a given third side length. This is because once the side lengths and one angle are fixed, the triangle's shape is fixed.

Read more on triangles here:https://brainly.com/question/1058720

#SPJ1

x + 3 if x < -2 [√x +2_ ifx>-2 54. Let f(x) (A) x2 + √(x) (C) lim f(x) x-2' = Find (B) lim-f(x) x- (D) f(-2)

Answers

If function f(x) = x^2 + √(x) then f(-2) = (-2)^2 + √(-2) = 4 + √2 and lim (√(x + 2)) as x approaches -2+ = √(0) = 0.

(A) The function f(x) is defined as follows:

f(x) = x^2 + √(x) if x < -2

f(x) = √(x + 2) if x > -2

(B) To find lim f(x) as x approaches -2 from the right, we substitute x = -2 into the function f(x) for x > -2:

lim f(x) as x approaches -2+ = lim (√(x + 2)) as x approaches -2+

The limit of √(x + 2) as x approaches -2+ can be found by substituting -2 into the function:

lim (√(x + 2)) as x approaches -2+ = √(0) = 0

(C) To find lim f(x) as x approaches -2 from the left, we substitute x = -2 into the function f(x) for x < -2:

limit f(x) as x approaches -2- = lim (x^2 + √(x)) as x approaches -2-

The limit of (x^2 + √(x)) as x approaches -2- can be found by substituting -2 into the function:

lim (x^2 + √(x)) as x approaches -2- = (-2)^2 + √(-2) = 4 + √2

(D) To find f(-2), we substitute x = -2 into the function f(x):

f(-2) = (-2)^2 + √(-2) = 4 + √2

To learn more about “limit” refer to the https://brainly.com/question/23935467

#SPJ11

The annual revenue earned by Walmart in the years from January 2000 to January 2014 can be approximated by R(t) = 176e0.0794 billion dollars per year (0 st s 14), where t is time in years. (t = 0 repr

Answers

The annual revenue earned by Walmart in the years from January 2000 to January 2014 can be approximated by R(t) = 176e^(0.0794t) billion dollars per year (0 ≤ t ≤ 14), where t is time in years.

(t = 0 represents the year 2000).Thus, the content loaded with the given information is that the annual revenue earned by Walmart can be estimated by the function R(t) = 176e^(0.0794t) billion dollars per year where t is time in years and the value of t can be from 0 to 14 representing the years from 2000 to 2014.

Learn more about annual revenue here:

https://brainly.com/question/4611544

#SPJ11

Find the linearization L(x) of the function at a.
f(x) = cos x, a = 3π/2

Answers

The linearization of the function f(x) = cos(x) at the point a = 3π/2 is L(x) = -1 - (x - 3π/2).

The linearization of a function at a point is an approximation of the function using a linear equation. It is given by the equation L(x) = f(a) + f'(a)(x - a), where f(a) is the value of the function at the point a, and f'(a) is the derivative of the function at the point a.

In this case, the function f(x) = cos(x) and the point a = 3π/2. Evaluating f(a), we have f(3π/2) = cos(3π/2) = -1.

To find f'(a), we take the derivative of f(x) with respect to x and evaluate it at a. The derivative of cos(x) is -sin(x), so f'(a) = -sin(3π/2) = -(-1) = 1.

Plugging in the values into the linearization equation, we get L(x) = -1 + 1(x - 3π/2) = -1 - (x - 3π/2).

Therefore, the linearization of the function f(x) = cos(x) at the point a = 3π/2 is L(x) = -1 - (x - 3π/2).

Learn more about linearization here:

https://brainly.com/question/31510530

#SPJ11

1 y 2 > (10 points) Find the outward Flux of F(x, y, z) = (xyz + xy, zy?(1 – 2) +e", ex2+4°) through the solid bounded by x2 + y2 = 16 and the planes z = 0 and z=y – 4. =

Answers

To find the outward flux of the vector field F(x, y, z) = (xyz + xy, zy^2(1 – 2z) + e^(-z), e^(x^2+4y^2)) through the solid bounded by the surfaces x^2 + y^2 = 16, z = 0, and z = y – 4, we can use the divergence theorem.

The divergence theorem states that the outward flux of a vector field through a closed surface S is equal to the triple integral of the divergence of the vector field over the volume V enclosed by the surface S.

First, let's calculate the divergence of the vector field F(x, y, z):

∇ · F = ∂/∂x (xyz + xy) + ∂/∂y (zy^2(1 – 2z) + e^(-z)) + ∂/∂z (e^(x^2+4y^2))

Taking the partial derivatives, we get:

∂/∂x (xyz + xy) = yz + y

∂/∂y (zy^2(1 – 2z) + e^(-z)) = 2zy(1 - 2z) - e^(-z)

∂/∂z (e^(x^2+4y^2)) = 2xe^(x^2+4y^2)

So, the divergence is:

∇ · F = yz + y + 2zy(1 - 2z) - e^(-z) + 2xe^(x^2+4y^2)

Next, we need to find the volume V enclosed by the surfaces x^2 + y^2 = 16, z = 0, and z = y - 4.

In cylindrical coordinates, the limits of integration are:

r: 0 to 4

θ: 0 to 2π

z: 0 to y - 4

Now, we can set up the triple integral to calculate the outward flux:

∫∫∫V (∇ · F) dV = ∫∫∫V (yz + y + 2zy(1 - 2z) - e^(-z) + 2xe^(x^2+4y^2)) r dz dθ dr

Integrating with respect to z from 0 to y - 4, then with respect to θ from 0 to 2π, and finally with respect to r from 0 to 4, we can evaluate the triple integral to find the outward flux of F through the given solid.

To know more about  divergence theorem, visit:
brainly.com/question/10773892

#SPJ11

Consider the vector field F and the curve C below.
F(x, y) = x4y5i + x5y4j,
C: r(t) = t3 − 2t, t3 + 2t ,
0 ≤ t ≤ 1
(a) Find a potential function f such that F = ∇f.
(b) Use part (a) to evaluate

Answers

(a) The potential function is f(x, y) = (1/5)x^5y^5 + C, where C is an arbitrary constant.

(b) The value of the line integral of F along the curve C is -243/5.

(a) To find a potential function f such that F = ∇f, we need to determine the function f(x, y) such that its partial derivatives with respect to x and y are equal to the components of F(x, y).

Given F(x, y) = x^4y^5i + x^5y^4j, we can integrate the components of F to find f(x, y):

∂f/∂x = [tex]x^4y^5[/tex]

∂f/∂y = [tex]x^5y^4[/tex]

Integrating the first equation with respect to x yields f(x, y) =[tex](1/5)x^5y^5[/tex] + g(y), where g(y) is a constant of integration that only depends on y.

Now, we differentiate this result with respect to y and set it equal to the second equation:

∂f/∂y = [tex]x^5y^4 = x^5y^4 + g'(y)[/tex]

Comparing the terms, we find that g'(y) = 0, which implies that g(y) is a constant.

Therefore, the potential function is f(x, y) = [tex](1/5)x^5y^5 + C[/tex], where C is an arbitrary constant.

(b) Using the potential function f(x, y) = (1/5)x^5y^5 + C from part (a), we can evaluate the line integral of F along the curve C by plugging in the parameterization of C into f and evaluating the difference of f at the endpoints.

C: r(t) = [tex]t^3 - 2t, t^3 + 2t,[/tex] 0 ≤ t ≤ 1

Evaluating f at the endpoints of C, we have:

f(r(1)) = [tex]f(1^3 - 2(1), 1^3 + 2(1)) = f(-1, 3) = (1/5)(-1)^5(3)^5 + C = -243/5 + C[/tex]

f(r(0)) = [tex]f(0^3 - 2(0), 0^3 + 2(0)) = f(0, 0) = (1/5)(0)^5(0)^5 + C = C[/tex]

Thus, the value of the line integral of F along C is:

∫F·dr = f(r(1)) - f(r(0)) = (-243/5 + C) - C = -243/5

Learn more about potential function here:

https://brainly.com/question/28156550

#SPJ11

Find sin 2x, cos2x, and tan 2x if sinx 15 17 and x terminates in quadrant II 8 0/0 sin 2x 0 Х 5 ? cos2x 0 ] tan 2x 0

Answers

The values of sin (2x), cos (2x) and tan (2x) in quadrant ii are:

sin(2x) = -240/289cos(2x) = -161/289tan(2x) = 240/161

Given that sin(x) = 15/17 and x terminates in quadrant II, we can use the trigonometric identities to find sin(2x), cos(2x), and tan(2x).

We know that sin(2x) = 2sin(x)cos(x), cos(2x) = cos^2(x) - sin^2(x), and tan(2x) = sin(2x)/cos(2x).

First, let's find cos(x). Since sin(x) = 15/17 and x terminates in quadrant II, we can use the Pythagorean identity sin^2(x) + cos^2(x) = 1 to solve for cos(x):

cos^2(x) = 1 - sin^2(x)

cos^2(x) = 1 - (15/17)^2

cos^2(x) = 1 - 225/289

cos^2(x) = 64/289

cos(x) = ± √(64/289)

cos(x) = ± (8/17)

Since x terminates in quadrant II, cos(x) is negative. Therefore, cos(x) = -8/17.

Now we can calculate sin(2x), cos(2x), and tan(2x):

sin(2x) = 2sin(x)cos(x)

sin(2x) = 2 * (15/17) * (-8/17)

sin(2x) = -240/289

cos(2x) = cos^2(x) - sin^2(x)

cos(2x) = (-8/17)^2 - (15/17)^2

cos(2x) = 64/289 - 225/289

cos(2x) = -161/289

tan(2x) = sin(2x)/cos(2x)

tan(2x) = (-240/289) / (-161/289)

tan(2x) = 240/161

tan(2x) = 240/161

Learn more about trigonometry at https://brainly.com/question/16884676

#SPJ11

Other Questions
Write each expression as a product of trigonometric functions. See Example 8.cos 4x - cos 2xsin 102 - sin 95cos 5x + cos 8xcos 4x + cos 8xsin 25 + sin(-48)sin 9x - sin 3x rapidly growing economies tend to affect housing markets in which of the following ways? group of answer choices a. supply decreases, and the price of housing plummets. b. demand increases, and the average price of a house rises. c. demand increases, and the average price of a house decreases. d. supply may shift, but not demand Find the radius of convergence of the power series. (-1)^-(x-7) n. 87 n = 1 Find the interval of convergence of the power series. [0, 7] (-7,7) (-8, 8) [0, 15] (-1, 15]Find the radius of convergen a measures how well a communication medium can reproduce all the nuances and subtleties of the message it transmits called________ In the second paragraph, what advice does Thoreau offer and why? Cite evidence from the text to support your response. Ascending paralysis with no loss of sensation is characteristic ofa.multiple sclerosis.b.Guillain - Barr syndrome.c.myasthenia gravis.d.amyotrophic lateral sclerosis. Which choice correctly identifies the oxidation numbers (O.N.) for each element in Ca(NOs)2? A) Ca = 0, N= 0,0 =0 B) Ca = 0,N=+5,0 =-2 C) Ca = +2,N=+5,0 =-6 D) Ca = +2, N=+5,0 = -2E) Ca = +4, N =+5,0 =-2 Most craftworkers who use pneumatic nailers operate their compressors at .a. 30 to 80 psib. 60 to 110 psic. 70 to 120 psid. 90 to 140 psi An investment project provides cash inflows of $10,800 in year 1; $9,560 in year 2; $10,820 in year 3; $7,380 in year 4 and $9,230 in year 5. What is the project payback period if the initial cost is $23,500? Given the given cost function C(x) = 3800+ 530x + 1.9x2 and the demand function p(x) = 1590. Find the production level that will maximize profit. Your roofing contractor came into your site office one day and asked you for the thickness of membrane require for the flat roof over the auditoriums. You kind of remember but you are not sure. How would you go about getting the answer? what sort of environment (hypotonic, hypertonic, isotonic) did the extra fertilizer create around the roots of the corn? a. hypotonic b. hypertonic c. isotonic a boat, costing $110,000 and uninsured, was wrecked the very first day it was used. this boat can either be disposed for $13,000 cash and be replaced with a similar boat costing $113,000, or rebuilt for $98,000 and be brand new as far as operating characteristics and looks are concerned. a relevant cost analysis of the decision to replace the boat shows:A. A $21,000 cost advantage associated with the decision to fix the old boat.B. A cost equivalence between the two decision options.C. An $11,000 net advantage associated with the decision to fix the old boat.D. A $1,000 cost advantage associated with the decision to fix the old boat (1 point) Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of 28 = t sin(t)dt dy dx NOTE: Enter your answer as a function. Make sure that your syntax is correct, i.e. Without using a calculator, simplify the following expression to a single trigonometric term: 6.1 sin 10 cos 440 + tan(360-0), sin 20 6.2 Given: sin(60 +2x) + sin(60 - 2x) 6.2.1 (3) Determine the vector and parametric equations of a line passingthrough the point P(3, 2, 1) andwith a direction vector parallel to the line r = [2, 3, 4] + s[1,1, 2], s R. 5. Find the radius of convergence and the interval of convergence for (x - 2)" 1 An=1 3n Calculate how much energy will be released if 0.50 moles of oxygen (O2) are consumed in the reaction:2Mg + O2 2MgOa) 946 kJb) 2838 kJc) 1892 kJd) 5676 kJ can you conclude that the mean compressive strength differs with three different plants? the angle between a = (25 m) i (45 m) j and the positive x-axis is