3/3=_/21Fill the blank space with the answer

Answers

Answer 1

In the expression 3/3=_/21, it can be observed that 7 is multipled by denominator 3 in order to obtain 21 in in denominator. So same number, 7 is also multiplied with the numerator also.

[tex]\frac{3}{3}\times\frac{7}{7}=\frac{21}{21}[/tex]

So, 21 is to be filled at blank space.


Related Questions

what is the slope of a line perpendicular to this linewhat is the slope of a line parallel to this line

Answers

Answer:

• Slope perpendicular to the line: 8/5

,

• Slope parallel to the line: –5/8

Explanation

Given

[tex]5x+8y=7[/tex]

To know the result, it is better if we work with the slope-intercept form:

[tex]y=mx+b[/tex]

Then, to get this kind of form we have to isolate y from the given equation:

[tex]8y=7-5x[/tex][tex]y=\frac{7-5x}{8}[/tex][tex]y=-\frac{5}{8}x+\frac{7}{8}[/tex]

Thus, in this case, m = –5/8 and b = 7/8.

Perpendicular lines have negative reciprocal lines:

[tex]m_2=-\frac{1}{m_1}[/tex]

where m₁ is the slope of line 1 and m₂ is the line perpendicular to line 1.

Then, replacing the values:

[tex]m_2=-\frac{1}{-\frac{5}{8}}[/tex][tex]m_2=\frac{8}{5}[/tex]

Finally, the slopes of parallel lines are the same, meaning:

[tex]m_2=m_1[/tex]

where m₁ is the slope of line 1 and m₂ is the line parallel to line 1.

5. Monty compared the minimum of the function f(x) = 2x2 - x + 6 to theminimum of the quadratic function that fits the values in the table below.X-3-2-101g(x)0-5-6-34What is the horizontal distance between the minimums of the twofunctions?A 0.25B. 1C. 1.5D. 12

Answers

The function f is given by:

[tex]\begin{gathered} f(x)=2x^2-x+6 \\ \text{ Rewrite the quadratic function in vertex form} \\ f(x)=2(x^2-\frac{1}{2}x)+6 \\ =2((x-\frac{1}{4})^2-(-\frac{1}{4})^2)+6 \\ =2(x-\frac{1}{4})^2-2(\frac{1}{16})+6 \\ =2(x-\frac{1}{4})^2+\frac{47}{8} \end{gathered}[/tex]

If a quadratic function is written in the form:

[tex]\begin{gathered} a(x-h)^2+k \\ where: \\ a>0 \end{gathered}[/tex]

Then the function has a minimum point at (h,k)

And the minimum is k

In this case,

[tex]\begin{gathered} a=2\gt0 \\ h=\frac{1}{4}=0.25 \\ k=\frac{47}{8}=5.875 \end{gathered}[/tex]

Therefore, the minimum of the function f is at (0.25, 5.875)

The minimum of the function given by the table is at (-1, -6).

Therefore, the required horizontal distance is given by:

[tex]0.25-(-1)=1.25[/tex]

Therefore, the horizontal distance is 1.25

(C3) In how many distinct ways can theletters of the word LILLYPILLY bearranged?A. 3.628.800B. 480C. 7.560D. 120.960.

Answers

We have:

L = 5 L's

I = 2 I's

P = 1 P

Y = 2 Y's

so:

[tex]\frac{10!}{5!2!2!}=7560[/tex]

Find the slope and y intercept of the line 5x - 3y =12

Answers

Answer:

slope = 5/3

y-intercept = -4

Step-by-step explanation:

First, move the x to the other side of the equation:
-3y=-5x+12
Then, divide BOTH sides by -3, so that there is no coefficient next to y:
y=5/3x-4

Then, just look at the constant and coefficient next to x (m). The slope is 5/3 and the y-intercept is -4.

Hope this helps!

Answer:

[tex]y = \frac{5}{3}x - 4[/tex]

Step-by-step explanation:

move the 5x to a -5x

-3y= -5x+12

-3/-3= -5x÷ -3 12÷ -3

The expression below is scientificnotation for what number? 4.58 • 10^-2

Answers

We are given the number in scientific notation:

[tex]4.58\times10^{-2}[/tex]

To convert it to decimal format, we need to move the decimal point two spaces to the left.

Since we don't have enough digits before the decimal point, we add two zeros before the 4:

[tex]004.58\times10^{-2}[/tex]

Now we move the point as required:

[tex]004.58\times10^{-2}=0.0458[/tex]

The required number is 0.0458

A bug is moving along a straight path with velocity v(t)= t^2-6t+8 for t ≥0. Find the total distance traveled by the bug over interval [0,6].

Answers

Answer

Explanation

Given:

A bug is moving along a straight path with velocity

[tex]V(t)=t^2-6t+8\text{ }for\text{ }t>0[/tex]

What to find:

The total distance traveled by the bug over interval [0, 6].

Solution:

To find the total distance traveled by the bug over interval [0, 6], you first integrate v(t)= t² - 6t + 8

[tex]\begin{gathered} \int_0^6t^2-6t+8 \\ \\ [\frac{t^3}{3}-\frac{6t^2}{2}+8t]^6_0 \\ \\ (\frac{t^3}{3}-3t^2+8t)^6-(\frac{t^{3}}{3}-3t^2+8t)^0 \\ \\ (\frac{6^3}{3}-3(6)^2+8(6))-(\frac{0^3}{3}-3(0)^2+8(0)) \\ \\ (\frac{216}{3}-3(36)+48)-(0-0+0) \\ \\ 72-108+48-0 \\ \\ =12\text{ }units \end{gathered}[/tex]

10. Calculate the circumference of cylinder that is 34cm tall and has a volume of560cm#9

Answers

The Solution.

By formula, the volume of the planet (sphere) is given as below:

[tex]V=\frac{4}{3}\pi r^3[/tex]

In this case,

[tex]\begin{gathered} V=5.10^{18}km^3 \\ r=\text{?} \end{gathered}[/tex]

Substitting these given values into the formula above, we can solve for r, the radius of the planet.

[tex]\frac{4}{3}\pi r^3=5(10^{18})[/tex]

Dividing both sides by

[tex]\frac{4}{3}\pi[/tex]

We get

[tex]r^3=\frac{5\times10^{18}}{\frac{4}{3}\pi}=\frac{5\times10^{18}}{4.188790205}[/tex]

Taking the cube root of both sides, we have

[tex]\begin{gathered} r=\sqrt[3]{(}\frac{5\times10^{18}}{4.188790205})=(1.060784418\times10^6)km^{} \\ Or \\ r=1060784.418\text{ km} \end{gathered}[/tex]

Thus, the correct answer is 1060784.418km.

9. Solve the system of equations algebraically. Show your reasoning.2y = x -44x + 3y = 5

Answers

I) 2y = x - 4

II) 4x + 3y = 5

First, we put all the variables on the same side subtracting x from both sides of equation I:

I) 2y - x = -4

II) 3y + 4x = 5

Now, we multiply equation I by 4:

I) 8y - 4x = -16

II) 3y + 4x = 5

Then, we add equation I to equation II:

I) 8y - 4x = -16

II) 11y = -11

Therefore, we got from equation II:

y = -11/11 = -1

Applying this result on equation I, we got:

-8 - 4x = -16

4x = 8

x = 8/4 = 2

Final answer: (x,y) = (2,-1)

13(10+2) could be used to simplify which of the following problems?A 013/20)B O13(12)C 0130(26)

Answers

Explanation:

The expression is given below as

You are taking 2 shirts(white and red) and 3 pairs of pants (black, blue, and gray) on a trip. How many different choices of outfits do you have?

Answers

6 because 2 times 3 = 6

Find the limit. (If an answer does not exist, enter DNE.)

Answers

Given:

[tex]\lim _{\Delta x\to0}\frac{6(x+\Delta x)-6x_{}}{\Delta x}[/tex]

Solve as:

[tex]\begin{gathered} \lim _{\Delta x\to0}\frac{6x+6\Delta x-6x}{\Delta x}=\lim _{\Delta x\to0}\frac{6\Delta x}{\Delta x} \\ =6 \end{gathered}[/tex]

Hence, the required answer is 6.

What is the value of y in the solution set of the system of linear equations shown below?y = -x + 124x - 2y = 36A.10B. 8C. 6D. 2

Answers

y = 2 (option D)

Explanation:

y = -x + 12

4x - 2y = 36

rewriting the equations:

y + x = 12 ....equation 1

-2y + 4x = 36 ....equation 2

Using elimination method:

we will be eliminating y. So we need to make the coefficient of y to be the same in both equation. We will be multiplying the first equation by 2.

2y + 2x = 24 ....equation 1

-2y + 4x = 36 ....equation 2

Add both equations:

2y + (-2y) + 2x + 4x = 24 + 36

2y-2y + 6x = 60

6x = 60

x = 60/6 = 10

Insert the value of x in any of the equation. Using equation 2:

4(10) - 2y = 36

40 -2y = 36

-2y = 36 - 40

-2y = -4

y = -4/-2

y = 2 (option D)

f (x) = 4x^2+2x+6find the value of the discriminate of f and how many distinct real number zeros f has.

Answers

The Solution:

Given:

Required:

To find the discriminant of f.

By formula, the discriminant (D) is:

[tex]D=b^2-4ac[/tex]

Where:

[tex]\begin{gathered} a=4 \\ b=2 \\ c=6 \end{gathered}[/tex]

Substitute:

[tex]\begin{gathered} D=2^2-4(4)(6)=4-96=-92 \\ No\text{ real root since D}<0 \end{gathered}[/tex]

Therefore, the correct answers are:

Discriminant = -92

No distinct real root.

I really need help with this can somebody help me ?

Answers

Answer

a. Vertical shrink by a factor of 1/3

Step-by-step explanation

Function transformation

• a,f(x) vertically compresses f(x) when 0 < a < 1

Given the function:

[tex]f(x)=x^2[/tex]

Multiplying f(x) by a = 1/3, we get:

[tex]\frac{1}{3}f(x)=\frac{1}{3}x^2=h(x)[/tex]

Then, f(x) is vertically shrunk by a factor of 1/3

the line that passes through point (-1,4) and point (6,y) has a slope of 5/7. find y.

Answers

Question: the line that passes through the point (-1,4) and point (6,y) has a slope of 5/7. find y.

Solution:

By definition, the slope of a line is given by the formula:

[tex]m\text{ = }\frac{Y2-Y1}{X2-X1}[/tex]

where m is the slope of the line and (X1,Y1), (X2,Y2) are any two points on the line. In this case, we have that:

(X1,Y1) = (-1,4)

(X2,Y2) = (6,y)

m = 5/7

thus, replacing the above data into the slope equation, we get:

[tex]\frac{5}{7}\text{= }\frac{y-4}{6+1}\text{ }[/tex]

this is equivalent to:

[tex]\frac{5}{7}\text{= }\frac{y-4}{7}\text{ }[/tex]

By cross-multiplication, this is equivalent to:

[tex]\text{5 = y-4}[/tex]

solving for y, we get:

[tex]y\text{ = 5+ 4 = 9}[/tex]

then, we can conclude that the correct answer is:

[tex]y\text{ =9}[/tex]

Ary is writing thank you cards to everyone who came to her wedding. It takes her of an hour to write one thank you card. If it took her 8 hours to finish writing all of the cards, how many thank you cards did she write?

Answers

From the question, It takes Ary an hour to write one thank you card.

So, the rate at which she writes the thank you card is;

[tex]\text{Rate R}=1\text{ card/hour}[/tex]

To determine the number N of thank you card she would write in 8 hours.

[tex]N=R\times T[/tex]

Where;

R is the rate = 1 card/hour

T is the time taken = 8 hours

Substituting the values we have;

[tex]\begin{gathered} N=1\text{ card/hour}\times8\text{ hours} \\ N=8\text{ cards} \end{gathered}[/tex]

The number of thank you cards she write is 8 cards

If the price of bananas goes from $0.39 per pound to $1.06 per pound, what is the likely effect of quantity demanded?

Answers

When the price of bananas goes from $0.39 per pound to $1.06 per pound, the likely effect of quantity demanded is that it will reduce.

What is demand?

The quantity of a commodity or service that consumers are willing and able to acquire at a particular price within a specific time period is referred to as demand. The quantity required is the amount of an item or service that customers will purchase at a certain price and period.

Quantity desired in economics refers to the total amount of an item or service that consumers demand over a given time period. It is decided by the market price of an item or service, regardless of whether or not the market is in equilibrium.

A price increase nearly invariably leads to an increase in the quantity supplied of that commodity or service, whereas a price decrease leads to a decrease in the quantity supplied. When the price of good rises, so does the quantity requested for that good. When the price of a thing declines, the demand for that good rises.

Learn more about demand on:

https://brainly.com/question/1245771

#SPJ1

helpppppppppppppppppppppppppppppp

Answers

De el puo Le je qua 510

skill issue hahahahahhaahahhahaha

csc 0 (sin2 0 + cos2 0 tan 0)=sin 0 + cos 0= 1

Answers

Okay, here we have this:

Considering the provided expression, we are going to prove the identity, so we obtain the following:

[tex]\frac{csc\theta(sin^2\theta+cos^2\theta tan\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{\frac{1}{sin\vartheta}(sin^2\theta+cos^2\theta\frac{sin\theta}{cos\theta})}{sin\theta+cos\theta}=1[/tex][tex]\frac{\frac{1}{sin\vartheta}(sin^2\theta+cos\text{ }\theta sin\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{(\frac{sin^2\theta}{sin\theta}+\frac{cos\text{ }\theta sin\theta}{sin\theta})}{sin\theta+cos\theta}=1[/tex][tex]\frac{(sin\text{ }\theta+cos\text{ }\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{1}{1}=1[/tex][tex]1=1[/tex]

What is the average rate of change of the function f(x) = 2x^2 + 4 over the interval (-4,-1] ?

Answers

The average rate of change is:

[tex]\frac{f(-1)-f(-4)}{-1+4}=\frac{f(-1)-f(-4)}{3}[/tex][tex]f(-1)=2(-1^2)+4=6[/tex][tex]f(-4)=2(-4^2)+4=2(16)+4=36[/tex]

then computing the first formula, the average rate of change of f(x) is

[tex]\frac{6-36}{3}=-10[/tex]

Can anybody help me out with this? I would really appreciate it! I don't need a huge explanation just the answer and a BRIEF explanation on how you got it.

Answers

The range of the following function is

[tex]\mleft\lbrace y>1\mright\rbrace[/tex]

We can also call the range of a function an image, the range or image of a function is a set, we can see this set looking at the graph and see which values of y the function have, remember that we can have the same y value for different x value, looking at our graph we can see that this function comes from high y values, have a vertex on (3,1), in other words, it stops at y = 1 and then start growing again, and go on repeated values of y, then we can say that the image (values of y that the function assumes) is all values bigger than 1, therefore {y > 1}.

A system of equations is shown below:Equation A: 3c = d − 8Equation B: c = 4d + 8Which of the following steps should be performed to eliminate variable d first?Multiply equation A by −4.Multiply equation B by 3.Multiply equation A by 3.Multiply equation B by 4.

Answers

We have the following: system of equations:

A: 3c=d-8

B: c=4d+8

To eliminate variable d first, if we want to use elimination method, we need to have variable d in both equations with the same coefficient but with different signs.

As in equation B, the coefficient of d is 4, then we need to have in equation A a coefficient of -4 for variable d.

Then the answer is we need to multiply equation A by -4.

Suppose that $6000 is placed in an account that pays 19% interest compounded each year. Assume that no withdrawals are made from the account.

Answers

We are going to use the formula for the compound interest, which is

[tex]A=P\cdot(1+\frac{r}{n})^{nt}[/tex]

A = the future value of the investment

P = the principal investment amount (the initial deposit or loan amount)

r = the annual interest rate (decimal)

n = the number of times that interest is compounded per unit t

t = the time the money is invested or borrowed for

Replacing the values in the first question we have:

[tex]\begin{gathered} A=P\cdot(1+\frac{r}{n})^{nt} \\ A=6000,r=0.19,n=1,t=1 \\ A=6000\cdot(1+\frac{0.19}{1})^1=7140 \end{gathered}[/tex]

Answer for the first question is : $7140

Then, replacing the values in the second question we have:

[tex]\begin{gathered} A=P\cdot(1+\frac{r}{n})^{nt} \\ A=6000,r=0.19,n=1,t=2 \\ A=6000\cdot(1+\frac{0.19}{1})^2=8497 \end{gathered}[/tex]

Answer for the second question is : $8497

Find the volume of the solid. Round your answer to the nearest hundredth. I keep getting the wrong answer. Need help!

Answers

Volume is area * height

area of pentagon is 1/4 * root(5(5 + 2root(5))) a^2

a being length of 1 side

if a =2, area is 6.88

6.88 * 4 = 27.52 yards^3

Given the functions f(x) = x ^ 2 + 3x - 1 and g(x) = - 2x + 3 determine the value of (f + g)(- 2)

Answers

Start by finding (f+g)(x)

[tex](f+g)(x)=(x^2+3x-1)+(-2x+3)[/tex]

simplify the equation

[tex]\begin{gathered} (f+g)(x)=x^2+(3x-2x)-1+3 \\ (f+g)(x)=x^2+x+2 \end{gathered}[/tex]

then, replace x by -2

[tex]\begin{gathered} (f+g)(-2)=(-2)^2+(-2)+2 \\ (f+g)(-2)=4-2+2 \\ (f+g)(-2)=4 \end{gathered}[/tex]

What are the unknown angles?

Answers

Answer:
A= 53°
B= 53°
C=127°

Explanation:

To find angle a, it is the same as the 53° angle given because they are corresponding angles. (Same place but on different lines)

To find angle b, we know that it is across from angle a. These types of angles are called alternate interior angles and they are always equal just like corresponding angles. So, therefore, angle b must equal angle a which is 53°.

To find angle c we know that a straight line equals 180°. Subtract the known 53 from 180 to figure out the degree of angle c.
180-53=127
Angle c=127°

You can always check your answer by making sure the line adds up to 180°
a is 53
b is 53
c is 127

Algebra 1B CP find the zeros of the function by factoringexercise 2 please

Answers

2) y = 8x² +2x -15

(4x -5)(2x +3)

S={-3/2, 5/4}

3) y= 4x² +20x +24

(4x +8)(x +3)

S={-2,3}

1) Factoring these quadratic functions we have:

2) y = 8x² +2x -15

Let's call u, and v two factors.

Multiplying 8 by -15 = we have u*v = -120 Adding u + v= 2, so u = 12 and v =-10

12 x -10 = -120

12 +(-10) = 2

So, now we can rewrite it following this formula:

(ax² + ux) +(vx +c)

(8x² +12x) +(-10x-15) Rewriting each binomial in a factored form

4x(2x +3) -5(2x+3)

(4x -5)(2x +3)

Equating each factor to zero to find out the roots:

(4x -5) =0

4x =5

x=5/4

(2x +3) = 0

2x = -3

x= -3/2

Hence, the solution set is S={-3/2, 5/4}

3) y= 4x² +20x +24

Proceeding similarly we have:

u * v = 96

u + v = 20

So u = 12, and v =8 12x 8 = 96 12 +8= 20

Rewriting into (ax²+ux)+(vx +c)

(4x²+12x) +(8x+24) Factoring out each binomial

4x(x+3) +8(x+3) As we have a repetition we can write:

(4x +8)(x +3)

3.2) Now to find out the roots equate each factor to zero, and solve it for x:

4x +8 = 0

4x = -8

x =-2

x+3 =0

x=-3

4) Hence, the answers are:

2) y = 8x² +2x -15

(4x -5)(2x +3)

S={-3/2, 5/4}

3) y= 4x² +20x +24

(4x +8)(x +3)

S={-2,3}

A recycle bucket weighs 3.5 lb at the beginning of the school year in August. At the beginning of December it weighed 21.5 lb. Determine the weight gain per month.

Answers

Answer:

4.5 pounds

Step-by-step explanation:

21.5 - 3.5 = 18

We divide that by 4 (Aug., Sept, Oct. Nov.)

18/4 = 4.5

Answer:

6.144

Step-by-step explanation:

ranslateSave & Exit CertifyLesson: 10.2 Parabolas11/15Question 9 of 9, Step 1 of 1CorrectFind the equationof the parabola with the following properties. Express your answer in standard form.

Answers

Given

[tex]undefined[/tex]

Solution

Standard from of a parabola

[tex](x-H-h)^2=4p(y-k)[/tex]

Find the midpoint M of the line segment joining the points R = (-5. -9) and S = (1. -1).

Answers

Answer:

(-2,-5)

Step-by-step explanation:

(-5+1÷2, -9+(-1)÷2)

=(-4÷2, -10÷2)

=(-2,-5)

Other Questions
Determine the value of k for which f(x) is continuous. what amount would a person with actual cash value coverage receive for two-year-old furniture destroyed by a fire? the furniture would cost $11,000 to replace today and had an estimated life of five years. Jerome and Frank both have genetic disorders. Jerome experiences weak muscles and Frank often loses his memory. Which most likely describes their diseases? A.Jerome has Huntingtons, which is sex-linked. Frank has cystic fibrosis, which is recessive. B.Jerome has hemophilia, which is recessive. Frank has Huntingtons, which is sex-linked.C.Jerome has cystic fibrosis, which is dominant. Frank has Duchenne muscular dystrophy, which is sex-linked.D.Jerome has Duchenne muscular dystrophy, which is sex-linked. Frank has Huntingtons, which is dominant. given which of the following describes the boundary line and shading for the second inequality in the system answer yes or no and explain why or why not.if a/5 = 8 + 9, does a/5 + 9 = 8 + 9? A bicycle company has designed and built a new model of sports bicycle. They have determined that the profit for the sale of the bicycles can be modeled by the function () = 2 , where x is the price of each bicycle. Which of the 2+ 920 + 84, 000 following is a sale price for the bicycles that will allow the company to achieve a profit of $189,800? A. $210 B. $230 C. $250 D. $270 2(x + 7) = 6x + 9 - 4x Retest: ProbabilityFor problems 1-3: Johnny Awesome has three red marbles, two blue marbles, five green marbles, and 7 yellowmarbles in a bag. What is the probability that'Johnny.....3) draws a blue marble, does not replace it, and then draws a green marble? There is a bag with 7 red buttons, 4 green buttons, 2 blue buttons, and 5 orange buttons. You are drawing thebuttons one at a time. Each time you draw a button, you keep it.P(red then green) =Show Your Work How do you know when an equation has infinite many solution?A. The coefficients are differentB. The coefficients are the same and the constants are differentC. The coefficients are the same and the constants are same look at the picture Show all five steps of the hypothesis test. You can either type them in here, or write them out on paper and send me a scan/picture of your work.The average movie ticket in 2010 cost $7.89. A random sample of 15 movie tickets from the suburbs of a large U.S. city indicated that the mean cost was $11.09 with a standard deviation of $4.86. At the 0.01 level of significance, can it be concluded that the mean in this area is higher than the national average? solve the following equation for pp/r+s=q ax-5y = -23x+4y = b Previous Answer: 12 Things to consider! What are the solid/solids of the figure? What are you being asked to find? What are you being given? The volume is 60mi?. What is the height of the Pyramid of Giza? What would be the best title for mollys written explanation to her teacher about how she will perform research for her project?. 22. Determine If you walked 20 m, took a book from a library table, turned around and walked back to your seat, what are the dis tance traveled and displacement? please answer in full sentences Please help please please Assume that a particular professional baseball team has 10 pitchers, 6 Infielders, and 9 other players. If 3 players' names are selected at random determine the probability that 2 are pitchers and 1 is an infielderWhat is the probability of selecting 2 pitchers and 1 infielder?Type an integer or a simplified fraction) The highly temperature one day was -3 the low temperature was -7 what was the difference