3) Vector A is 2.8 cm at 60° above the positive x-axis. Vector B is 1.90 cm at 60 below the
positive x-axis. Use components to find the following
a) A+ B
b) A-B
c) B-A

3) Vector A Is 2.8 Cm At 60 Above The Positive X-axis. Vector B Is 1.90 Cm At 60 Below Thepositive X-axis.

Answers

Answer 1

The following vector components are:

a) A+ B - 84.21°

b) A-B - 18.74°

c) B-A - -84.21°

How to find vector components?

To use components to find the given vectors, break each vector into its x and y components using trigonometry.

Assume the positive x-axis points to the right and the positive y-axis points up.

For vector A, the magnitude of the x-component is given by Acos(60°) and the magnitude of the y-component is given by Asin(60°),

Ax = Acos(60°) = 2.8 cm × 0.5 = 1.4 cm

Ay = Asin(60°) = 2.8 cm × 0.866 = 2.425 cm

For vector B,  the negative sign since the vector is below the x-axis,

Bx = Bcos(60°) = 1.9 cm × 0.5 = 0.95 cm

By = -Bsin(60°) = -1.9 cm × 0.866 = -1.6494 cm

a) To find A + B, add the x and y components separately:

(A + B)x = Ax + Bx = 1.4 cm + 0.95 cm = 2.35 cm

(A + B)y = Ay + By = 2.425 cm - 1.6494 cm = 0.7756 cm

Then, the vector A + B has a magnitude of √[(2.35 cm)² + (0.7756 cm)²] = 2.466 cm and an angle of tan⁻¹(0.7756 cm / 2.35 cm) = 18.74° above the positive x-axis.

b) To find A - B, subtract the x and y components separately:

(A - B)x = Ax - Bx = 1.4 cm - 0.95 cm = 0.45 cm

(A - B)y = Ay - By = 2.425 cm + 1.6494 cm = 4.0744 cm

Then, the vector A - B has a magnitude of √[(0.45 cm)² + (4.0744 cm)²] = 4.091 cm and an angle of tan⁻¹(4.0744 cm / 0.45 cm) = 84.21° above the positive x-axis.

c) To find B - A, subtract the x and y components separately:

(B - A)x = Bx - Ax = 0.95 cm - 1.4 cm = -0.45 cm

(B - A)y = By - Ay = -1.6494 cm - 2.425 cm = -4.0744 cm

Then, the vector B - A has a magnitude of √[(-0.45 cm)² + (-4.0744 cm)²] = 4.091 cm and an angle of tan⁻¹(-4.0744 cm / -0.45 cm) = -84.21° below the positive x-axis.

Find out more on Vector here: https://brainly.com/question/27854247

#SPJ1


Related Questions

A work done of 50 μJ happen to a charge that is 6 nC. Calculate the voltage.

Answers

Answer:

V = 8333.33 volts

Explanation:

We know that the work done (W) in joules is equal to the product of the charge (Q) in coulombs and the voltage (V) in volts, i.e.

W = QV

Rearranging the above equation, we get

V = W/Q

We are given that the work done (W) is 50 μJ, which is equal to 50 x 10^-6 joules.

The charge (Q) is 6 nC, which is equal to 6 x 10^-9 coulombs.

Substituting the values, we get

V = (50 x 10^-6) / (6 x 10^-9)

V = 8333.33 volts

Therefore, the voltage is 8,333.33 volts (rounded to two decimal places).

Bending is a winter sport in which participants push a 15 kg rock across a horizontal snow patch. In 3.0 seconds, a bender accelerates a rock from rest to 4.0 m/s. What is the average power of the bender for accelerating the rock?

Answers

We can use the formula for average power:

P = W / t

where W is the work done and t is the time taken. The work done can be calculated using the formula:

W = (1/2) * m * v^2

where m is the mass of the rock and v is its final velocity. Substituting the given values:

W = (1/2) * 15 kg * (4.0 m/s)^2 = 120 J

Substituting the given value of time:

t = 3.0 s

Now we can calculate the average power:

P = W / t = 120 J / 3.0 s = 40 W

Therefore, the average power of the bender for accelerating the rock is 40 watts.

How does the orientation of the bar magnet affect the measured magnetic field strength?

Answers

When two magnets are close to each other, the magnets experience a repulsive or attractive force. The magnetic field strength is affected by the orientation of the magnet.

The direction in which the bar magnet obtains its maximum magnetic property is called the orientation of the magnet. The magnetic field strength depends on the orientation of the magnet.

The magnetic field lines emerge from the north pole and end in the south pole. When the two bar magnets of opposite poles face each other, an attractive force will be produced and magnetic field strength increases.

When the bar magnet of the same poles faces each other, repulsive force will produce and magnetic field strength decreases. Hence from the orientation of the bar magnet,  the magnetic field strength gets affected.

To learn more about the orientation of bar magnets:

https://brainly.com/question/12784598

#SPJ1

Keyana and Sam are testing the law of conservation of energy. They use the same ball and release it from the same vertical height. Keyana is using a frictionless track, while Sam's track has friction. They discover Keyana's ball had more kinetic energy than Sam's when it reached the bottom. Which statement best explains why this happened if energy is conserved? Sam's ball lost mass as it traveled along the track. Sam's ball interacting with the track converted energy into heat. Keyana's ball was able to gain momentum. Keyana's ball had more potential energy.

Answers

The true statement is "Sam's ball interacting with the track converted energy into heat." The correct option is B.

The law of conservation of energy states that energy cannot be created or destroyed, only transferred or converted from one form to another. This means that the total amount of energy in a closed system remains constant.

The friction between Sam's ball and the track caused some of the energy to be lost as heat, while Keyana's ball experienced no such loss due to the absence of friction in her experiment. Therefore, Keyana's ball retained more of its initial potential energy as kinetic energy, resulting in a greater velocity and hence more kinetic energy at the bottom.

Option A (Sam's ball lost mass as it traveled along the track) is not true because it is not possible for the ball to lose mass during the experiment. The mass of the ball is a constant value and is not affected by the experiment.

Option C (Keyana's ball was able to gain momentum) is not the best explanation because momentum is not conserved in this scenario since external forces like friction are acting on the ball. The ball is only gaining kinetic energy.

Option D (Keyana's ball had more potential energy) is not true because both Keyana and Sam released the ball from the same vertical height. Therefore, both balls had the same initial potential energy. The difference in their kinetic energies at the bottom can be explained by the difference in their conservation of energy due to friction.

Therefore, The correct statement that best explains why Keyana's ball had more kinetic energy than Sam's when it reached the bottom, even though energy is conserved, is: Sam's ball interacting with the track converted energy into heat.

To learn more about the conservation of energy click:

brainly.com/question/2137260

#SPJ1

A voltage of 65 V happen to a 2.53 nC. Calculate the work done.

Answers

The work done can be calculated using the formula:

W = Q * V

where W is the work done in joules (J), Q is the charge in coulombs (C), and V is the voltage in volts (V).

In this case, Q = 2.53 nC = 2.53 x 10^-9 C and V = 65 V.

Substituting these values into the formula, we get:

W = 2.53 x 10^-9 C * 65 V

W = 1.64 x 10^-7 J

Therefore, the work done is 1.64 x 10^-7 joules (J).

A complete circuit with a capacitor is turned on. What causes that potential energy produced?

The voltage difference across the capacitor.
The switch adds energy to the system through the capacitor.
The electrons are removed from one side of the capacitor and moved to the other side.
The current running through the wire causes the capacitor to heat up, raising the resistance of the wire.

Answers

The correct answer is a. The voltage difference across the capacitor.

When a complete circuit with a capacitor is turned on, the capacitor begins to charge up. This means that charge is transferred from one plate of the capacitor to the other, creating a voltage difference across the capacitor. This voltage difference represents potential energy stored in the electric field between the plates of the capacitor. Therefore, the potential energy produced when a complete circuit with a capacitor is turned on is due to the voltage difference across the capacitor.

The potential energy produced in a complete circuit with a capacitor is caused by the voltage difference across the capacitor.

A capacitor is an electrical component that stores electric charge. When a capacitor is connected to a complete circuit and a voltage is applied, it becomes charged. The voltage difference across the capacitor creates an electric field between its plates, which stores potential energy in the electric field.

As the capacitor charges, electrons accumulate on one plate, creating a negative charge, while the other plate becomes positively charged due to the loss of electrons. This separation of charge creates an electric potential difference (voltage) between the two plates of the capacitor.

The potential energy stored in the capacitor is directly proportional to the square of the voltage across it and the capacitance (C) of the capacitor, and is given by the formula:

Potential energy (PE) = (1/2) * C * V²

where V is the voltage across the capacitor.

As the voltage across the capacitor increases, more potential energy is stored in the electric field between its plates. When the circuit is turned off or the capacitor is discharged, this stored potential energy is released back into the circuit in the form of electrical energy. Capacitors play a crucial role in many electronic devices and circuits by providing energy storage and smoothing out voltage fluctuations.

To learn more about capacitor, here

https://brainly.com/question/31627158

#SPJ2

Select a character from the book and
choose two character traits that you
believe this character has. Describe
how the character has each of these
traits using information and
examples from your book that prove
that they do.

Answers

Within Chinua Achebe's novel entitled "Things Fall Apart", there lies a figure of paramount importance: Okonkwo.

How to explain the character

This individual is marked by two fundamental traits - determination and an unyielding dread of revealing his vulnerability, for he places immense value in tradition and rampant masculinity.

His ironclad willpower fuels his ambitions to attain respect and success within his community, through unwavering persistence and ceaseless diligence. Empowered by his fearsome strength and exceptional valor on the battlefield, along with his gathering wealth and spouses, this man gradually rises above his peers in stature, receiving adoration and honor in return.

Learn more about character on

https://brainly.com/question/898716

#SPJ1

A blue car of length 4.52 m is moving north on a roadway
that intersects another perpendicular roadway. The width of the intersection from near edge to far edge is 28.0 m. The blue car has a constant acceleration of magnitude 2.10 m/s2 directed south. The time interval required for the nose of the blue car to move from the near (south) edge of the intersection to the north edge of the intersection is 3.10 s. (a) How far is the nose of the blue car from the south edge of the intersection when it stops? (b) For what time interval is any part of the blue car within the boundaries of the intersection? (c) A red car is at rest on the perpendicular
intersecting roadway. As the nose of the blue car enters the intersection, the red car starts from rest and accelerates east at 5.60 m/s2. What is the minimum distance
from the near (west) edge of the intersection at which the nose of the red car can begin its motion if it is to enter the intersection after the blue car has entirely left the intersection? (d) If the red car begins its motion at the position given by the answer to part (c), with what speed does it enter the intersection?

Answers

The distance of the blue car from the edge of the intersection, when it stops, is 35.9 m, the time interval of the blue car within the boundaries of the intersection is 4.04 s, the minimum distance is 45.8 m, and the speed of the car is 22.6 m/s.

From the given,

A) the distance of the blue car from the south edge of the intersection when it stops =?

The width of the intersection = 28m

Acceleration = -2.10 m/s²

time interval = 3.10 s

By using the equation

x = x₀ + v₀t + 1/2 (at²)

28 = 0 + v₀(3.10) + 1/2 (-2.10 ×(3.10)²)

v₀ = 12.3 m/s

v² = v₀² + 2a (x-x₀)

(x-x₀) = Δx = v²-v₀² / 2a

  Δx  = 35. 9m

B) the time interval=?

distance covered by the blue car = 4.52 + 28 = 32.52 m

By using the relation,

x = x₀ + v₀t + 1/2 (at²)

32.52 = 0 + (12.3)t + 1/2 (-2.10)t²

-1.05t²+12.3t-32.52 = 0

This is the quadratic equation. By solving it, time t= 4.04s,7.66s. The desired time is t = 4.04 s, and the tail of the blue car leaves the intersection.

C) the minimum distance is=?

x = x₀ + v₀t + 1/2 (at²)

  = 0 + 0 + 1/2 (5.60 (4.04)²)

 = 45.8 m

The minimum distance of the blue car is 45.8m

D) speed of the car=?

the velocity equation

v = v₀ + at

= 0 + (5.60 ×4.04)

= 22.6 m/s

The velocity of the car is 22.6 m/s.

To learn more about the Equation of motion:

https://brainly.com/question/29278163

#SPJ1

A beaver runs at a speed of 2.0 m/s with 45 J of kinetic energy. What is the beaver’s mass?

Answers

A beaver runs at a speed of 2.0 m/s with 45 J of kinetic energy, then the mass is approximately 1.74 kg, and this can be calculated by using the  kinetic energy (KE) of an object that is KE = (1/2) ×m × [tex]v^2[/tex].

KE = (1/2) ×m × [tex]v^2[/tex].

where m= mass of the object, v=its velocity.

The beaver runs at a speed of 2.0 m/s with 45 J of kinetic energy. Substituting these values into the above equation

45 J = (1/2) ×m × [tex](2.0 m/s)^2[/tex]

Simplifying this equation:

45 J = (1/2) × m × 4.0[tex]m^2/s^2[/tex]

45 J = 2 m × 2 [tex]m^2/s^2[/tex]

45 J = 4 [tex]m^3/s^2[/tex]

[tex]m^3[/tex] = 45 J / 4 [tex]s^2[/tex]

[tex]m^3[/tex] = 11.25 kg×[tex]m^2/s^2[/tex]

Taking the cube root of both sides to solve for mass,

m = (11.25 kg×[tex]m^2/s^2)^(^1^/^3^)[/tex]

m = 1.74 kg (rounded to two decimal places)

Learn more about the calculation of mass here.

https://brainly.com/question/20480898

#SPJ1

How to solve the question, pls ignore my answer ? I don't know how to finsih​

Answers

The final velocity of the puck, v, is determined as 3 m/s.

What is the impulse received by the puck?

The impulse received by the puck is calculated by applying the following formula.

impulse received = change in momentum of the puck = area under the curve

Area under the curve = area of triangle

Area of triangle = ¹/₂ x b x h

where;

b is the base = ( 5 ms - 2 ms) = 3 ms = 0.003 sh is the height = 160 N

Area = ¹/₂ x 0.003 s x 160 N

Area = 0.24 Ns

Therefore, impulse (J) = change in momentum (ΔP) = 0.24 Ns

The final velocity of the puck is calculated as follows;

m(vf - vi) = ΔP

where;

vf is the final velocity of the puckvi is the initial velocity of the puckm is the mass of the puck

Let vf be in positive direction,

then vi will in negative direction

0.03 kg(vf - (-5 m/s)) = 0.24 Ns

vf + 5 = 0.24/0.03

vf + 5 = 8

vf = 8 - 5

vf = 3 m/s

Learn more about impulse here: https://brainly.com/question/229647

#SPJ1

A proton is accelerated from rest through a potential difference of 91 V. Calculate the final speed of this proton.

Answers

Answer: v = 4.17 x 10^5 m/s

Explanation:

The potential difference (ΔV) is given as 91 V. The charge of the proton is given by q = 1.6 x 10^-19 C.The mass of the proton is given by m = 1.67 x 10^-27 kg. The acceleration due to gravity is given by g = 9.81 m/s^2. The final speed of the proton can be calculated as follows:

The potential energy gained by the proton (ΔU) can be calculated using the formula:

ΔU = qΔV

where

q = charge of the proton

ΔV = potential difference

Substituting the given values, we get:

ΔU = (1.6 x 10^-19 C) x (91 V) = 1.456 x 10^-17 J

The kinetic energy gained by the proton (K) can be calculated using the formula:

K = (1/2)mv^2

where

m = mass of the proton

v = final speed of the proton

The kinetic energy gained by the proton is equal to the potential energy gained by the proton. Therefore, we have:

K = ΔU = 1.456 x 10^-17 J

Substituting the given values, we get:

1.456 x 10^-17 J = (1/2) x (1.67 x 10^-27 kg) x v^2

Simplifying the equation, we get:

v^2 = (2 x 1.456 x 10^-17 J) / (1.67 x 10^-27 kg)

v^2 = 1.743 x 10^10 m^2/s^2

Taking the square root of both sides, we get:

v = 4.17 x 10^5 m/s

Therefore, the final speed of the proton is 4.17 x 10^5 m/s.

When a proton is accelerated from rest through a potential difference of 91 V then final speed of this proton is

A proton is a stable subatomic particle with a +1 e (elementary charge) positive electric charge. It has a little lower mass than a neutron and a mass that is 1,836 times that of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of around one atomic mass unit, are referred to collectively as "nucleons" (particles found in atomic nuclei).

Potential energy of the proton gets converted into kinetic energy.

i.e. 1/2 mv² = qV

Where m is mass of the proton, v is velocity of the proton and q is charge on proton, V is potential difference.

Given,

mass of the proton m = 1.6 × 10⁻²⁷ kg

charge on proton q =1.6 × 10⁻¹⁹ C

P.D. V = 91 V

putting values in equation,

1/2× 1.6 × 10⁻²⁷ kg × v² = 1.6 × 10⁻¹⁹ C × 91 V

0.8 × 10⁻²⁷ v² = 145 × 10⁻¹⁹ C

v = 1.34 × 10⁵ m/s

To know more about proton :

https://brainly.com/question/30895149

#SPJ1.

Ice of mass 14.6 kg at 0°C is placed in an ice chest. The ice chest has 3.5 cm thick walls of thermal conductivity 0.01 W/m x K and a surface area of 1.21 m^2. Express your answers with appropriate mks units.
(a) How much heat must be absorbed by the ice during the melting process?
(b) If the outer surface of the ice chest is at 36° C, how long will it take for the ice to melt?

Answers

The heat absorbed by the melting ice is Q = 4,875,600 J.

How to solve

a, Given mass (m) = 14.6 kg, then the heat absorbed by the melting ice is Q = 4,875,600 J.

This can be determined using Q = 14.6 kg × 334,000 J/kg.

b. By utilizing the equation P = (0.01 W/m × K × 1.21 m^2 × 36 K) / 0.035 m, we can determine that P equals 12.396 watts.

To discover how long it will take for the ice to melt, we can use another formula: t = Q / P.

With the given value of Q as 4,875,600 joules and P is equal to 12.396 watts, we find that t evaluates to roughly 393,292 seconds.

In order to transform this result into hours, simply divide by 3600 which leads us to t ≈ 109.25 hours.

Therefore, it is predicted that the ice will melt in approximately 109.25 hours.

Read more about thermal conductivity here:

https://brainly.com/question/11213835

#SPJ1

A ball swings in a vertical circle at the end of a rope 1.50 m long. When the ball is 36.9° past the lowest point on its way up, its total acceleration is (-22.5i + 20.2j) m/s2 . For that instant, (a) sketch a vector diagram showing the components of its acceleration, (b) determine the magnitude of its radial acceleration, and (c) determine the speed and velocity of the ball.​

Answers

(a) The vector diagram of the acceleration is attached.

(b) -13.5 m/s²

(c) speed is 2.95 m/s and velocity is (1.79 i + 2.95 j) m/s.

How to calculate magnitude, speed and velocity?

(b) At the highest point, the velocity of the ball is horizontal and the acceleration is vertical. So, radial acceleration:

radial acceleration = ar = a sin(θ) = (-22.5 m/s²) sin(36.9°) ≈ -13.5 m/s²

(c) The speed of the ball using the conservation of energy equation:

mgh + (1/2)mv² = constant

where m = mass of the ball,

g = acceleration due to gravity,

h = height of the ball above the lowest point, and

v = speed of the ball.

At the lowest point, the speed of the ball is equal to the square root of 2gh, where h is the height of the ball above the lowest point. At the point where the ball is 36.9° past the lowest point, the height of the ball above the lowest point is:

h = L(1 - cos(θ)) = 1.5(1 - cos(36.9°)) ≈ 0.665 m

Therefore, the speed of the ball is:

v = √(2gh) = √(2g(L-h)) = √(2(9.81 m/s²)(1.5 - 0.665) m) ≈ 2.95 m/s

The velocity of the ball is tangential to the circle and is perpendicular to the radial acceleration. At the point 36.9°, tangential component of the total acceleration is:

at = a cos(θ) = (20.2 m/s²) cos(36.9°) ≈ 16.1 m/s²

The angular acceleration:

α = ar / L = (-13.5 m/s²) / 1.5 m ≈ -9 m/s²

Therefore, the speed and velocity of the ball are:

speed = v ≈ 2.95 m/s

velocity = (at / α) i + v j ≈ (1.79 i + 2.95 j) m/s

Find out more on magnitude and speed here: https://brainly.com/question/28861519

#SPJ1

1. Determine the average of the three trials for each material.
Mystery A = ___30_______
Mystery B = ___2.8_______

In which material would light travel faster, Mystery A or Mystery B? Explain

2. As the index of refraction for the second medium is increased, what effect does this have on the angle of refraction? When it comes in at a lower angle, the ray bends more.

3. Write a conclusion for this lab.

Answers

The lab experiment found that light travels faster in Mystery A compared to Mystery B, with average speeds of 3.0 and 2.8, respectively. The increase in the index of refraction for the second medium led to a higher angle of refraction, resulting in light bending more. These findings have practical implications for optics and communications.

1. Light would travel faster in Mystery A since the average speed of light in Mystery A (3.0) is higher than Mystery B (2.8).

2. Increasing the index of refraction for the second medium leads to an increase in the angle of refraction. When light comes in at a lower angle, it bends more.

3. In conclusion, this lab experiment showed that the speed of light in a material is influenced by the material's index of refraction. Mystery A had a higher average speed of light compared to Mystery B, indicating that light travels faster in Mystery A. Additionally, the angle of refraction increased as the index of refraction for the second medium was increased. These findings have practical applications in the field of optics and communications.

Hence,The laboratory experiment discovered that, with average speeds of 3.0 and 2.8, respectively, light moves more quickly in Mystery A than Mystery B. Light bent more as a result of the second medium's increased index of refraction due to a higher angle of refraction. For optics and communications, these findings have real-world applications.

To learn more about Snell's Law of refraction click:

https://brainly.com/question/24321580

#SPJ1

A hurricane travels a distance of 20 miles in 1 hour. Determine the hurricanes velocity.

Answers

Answer:

the answer is 20mi/hr

Explanation:

a block of mass m is at rest on the table .is it possible for this block at rest to have only a single force acting on it​

Answers

Answer:

In short no , there is always minimum 2 forces.

Explanation:

First force: Weight force ( The force of gravity on the object attracting the block of masse m to earth)

Second force: Normal reaction ( This force is perpendicular to the surface )

Answer:

no

Explanation:

if only single force acts on the block it will stay at rest and it will accelarate in direction of force

How do scientists believe elements were originally formed?

Question 3 options:

Under high pressure in the ocean


Through the cooling of lava in volcanoes


Through fusion in stars


Through chemical burning reactions

Answers

Answer:

Scientists believe that elements were originally formed through fusion in stars.

Explanation:

Because lighter elements combine to form heavier ones under high temperatures and pressures, this process is known as nuclear fusion and occurs within stars' cores. When a star exhausts its fuel, it undergoes a supernova explosion that releases heavier elements into space, which can then be incorporated into new stars, planets, and other celestial bodies.

The Children's Health Insurance Program (CHIP) is designed to:
A. provide low-cost health coverage to children in families that earn
too much for Medicaid.
B. enable families with children to compare the costs of health care
plans.
C. enable families to find medical professionals for their children
within their health care network.
D. provide low-cost health coverage to children in families that
receive Medicare.
SUBMIT

Answers

The Children's Health Insurance Program (CHIP) is designed to provide low-cost health coverage to children in families that receive Medicare.

Hence option D is correct.

The Children's Health Insurance Programme (CHIP) offers medical care to children under the age of 18 whose parents earn too much to qualify for Medicaid but not enough to pay for private coverage. CHIP was enacted by Congress during the Clinton administration in 1997.

The Children's Health Insurance Programme (CHIP) is a federal healthcare programme in the United States that is handled and designated differently by each state. For example, New York's programme is known as Child Health Plus, whereas Arkansas' programme is known as ARKids.

The federal government distributes matching funding to each state, similar to how Medicaid operates.

Hence option D is correct.

To know more about (CHIP) :

https://brainly.com/question/8395614

#SPJ1.

There are two resistors connected in parallel: R1-43 Ohms and R2-43 Ohms.
Determine the equivalent resistance. Round your answer to 2 significant digits only. For example, if the answer is 65.4 Ohms write 65.

Answers

If There are two resistors connected in parallel: R1-43 Ohms and R2-43 Ohms,  then the equivalent resistance is 21.5Ω.

A resistor is a passive two-terminal electrical component used in circuits to implement electrical resistance. Resistors have a variety of purposes in electronic circuits, including lowering current flow, adjusting signal levels, dividing voltages, biassing active components, and terminating transmission lines. High-power resistors that can generate many watts of heat instead of electrical energy can be utilised as test loads for generators, power distribution systems, and motor controls. With temperature, time, or operating voltage changes, fixed resistors' resistances only slightly fluctuate. Variable resistors can be utilised as force sensors, heat sensors, light sensors, volume controls, lamp dimmers, humidity sensors, and chemical activity sensors.

The equivalent resistance in parallel combination is

R(p) = R₁R₂÷R₁+R₂

putting all values,

R(p) = 43×43÷(43+43)

R(p) = 21.5Ω

To know more about Resistor :

https://brainly.com/question/24297401

#SPJ1

An acorn falls from rest from the top of a 19m tall oak tree. How long does it take for the acorn to fall to the ground? How fast is the acorn going before it hits the ground?

Answers

Answer:

We can solve this problem using the kinematic equation:

y = 1/2 * g * t^2

where y is the height of the tree, g is the acceleration due to gravity (9.8 m/s^2), and t is the time taken to fall to the ground.

We can solve for t using:

t = sqrt(2y/g)

Plugging in the values, we get:

t = sqrt(2(19)/9.8)

t = 2.19 seconds

So, it takes 2.19 seconds for the acorn to fall from the tree to the ground.

To find the velocity of the acorn just before it hits the ground, we can use:

v = g * t

Plugging in the values, we get:

v = 9.8 * 2.19

v = 21.46 m/s

So, the acorn is going approximately 21.46 m/s just before it hits the ground.

Explanation:

5. A body moving with uniform acceleration has a velocity 12 m/s in the positive x direction when its x coordinate is 3cm. If its x coordinate 2 s later is -5 cm, what is the magnitude of its acceleration? ​

Answers

The magnitude of acceleration can be calculated using the following kinematic equation:

x = x0 + v0t + 1/2at^2

where
x = final position = -5 cm
x0 = initial position = 3 cm
v0 = initial velocity = 12 m/s
t = time = 2 s

Converting all units to SI units, we get:

x = -0.05 m
x0 = 0.03 m
v0 = 12 m/s
t = 2 s

Substituting these values into the equation and solving for a, we get:

a = 2(x - x0 - v0t) / t^2
a = 2(-0.05 - 0.03 - 12(2)) / (2)^2
a = -12.5 m/s^2

Therefore, the magnitude of acceleration is 12.5 m/s^2.
The magnitude of the acceleration of the body is 2.35 m/s^2.

We can use the following kinematic equation to solve for the acceleration:

x = x0 + v0t + 1/2 at^2

where x is the final position, x0 is the initial position, v0 is the initial velocity, t is the time, and a is the acceleration.

Plugging in the given values, we get:

-0.05 m = 0.03 m + 12 m/s * 2 s + 1/2 * a * (2 s)^2

Simplifying and solving for a, we get:

a = (0.05 m - 0.72 m)/2 s^2 = -0.335 m/s^2

Since the acceleration is in the opposite direction of the initial velocity, we take the absolute value to get the magnitude of the acceleration:

|a| = 0.335 m/s^2 ≈ 2.35 m/s^2.

The same collision as in Question 5 takes place, only this time the car and the truck bounce off each other completely elastically What are the final velocities of the car and truck just after the collision?

Answers

The final velocities of the car and truck just after the collision will be as per the conservation of momentum.

Momentum is defined as product of mass and velocity of the body. It is denoted by letter p and it is expressed in kg.m/s. Mathematically p = mv. it discuss the moment of the body. body having zero mass or velocity has zero momentum. The dimensions of the momentum is [M¹ L¹ T⁻¹].

According to conservation of momentum, Initial momentum will be equal to the final momentum. In the elastic collision there is no loss of energy, both energy and momentum is conserved.

if the the car is coming with velocity equal to the mass of the truck and truck is coming with mass of the car, then they have same momentum in opposite direction when they collide each other the final velocity of both car and truck becomes zero.

To know more about momentum :

https://brainly.com/question/20301772

#SPJ1.

Questions (complete sentences)

1. Determine the average of the three trials for each material.
Mystery A = ___30_______
Mystery B = ___2.8_______

In which material would light travel faster, Mystery A or Mystery B? Explain

2. As the index of refraction for the second medium is increased, what effect does this have on the angle of refraction? When it comes in at a lower angle, the ray bends more.

3. Write a conclusion for this lab.

Answers

The average of the three trials for

Mystery A = 30 and for Mystery B = 2.8.

1. To determine which material would allow light to travel faster, we need to compare their respective indices of refraction. The index of refraction is defined as the ratio of the speed of light in a vacuum to the speed of light in the medium. A higher index of refraction means that light travels slower in that medium.

Therefore, if Mystery A has a lower index of refraction than Mystery B, then light would travel faster in Mystery A. Conversely, if Mystery B has a lower index of refraction than Mystery A, then light would travel faster in Mystery B.

2. As the index of refraction for the second medium is increased, the angle of refraction decreases. This is because the speed of light is slower in a medium with a higher index of refraction, causing it to bend more as it enters the medium.

The relationship between the angle of incidence, angle of refraction, and indices of refraction is described by Snell's law, which states that n1 sin(theta1) = n2 sin(theta2), where n1 and n2 are the indices of refraction of the two media, and theta1 and theta2 are the angles of incidence and refraction, respectively.

3. This lab explored the properties of light as it travels through different materials with varying indices of refraction. By measuring the angles of incidence and refraction, we were able to calculate the indices of refraction for two mystery materials. Through further analysis, we determined which material allowed light to travel faster. This lab helped us to better understand the behavior of light as it interacts with different materials, and reinforced the importance of the index of refraction in determining the speed of light in a given medium.

To know more about the Refraction, here

https://brainly.com/question/19132753

#SPJ1

Jason's heartbeat is measured to be 65 beats per minute.
What is the frequency of heartbeats in hertz?
What is the period for each heartbeat in seconds?

Answers

Answer:

To find the frequency of heartbeats in hertz, we need to convert the beats per minute (BPM) to beats per second (BPS), since frequency is measured in hertz (Hz) which is equivalent to cycles per second.

Frequency = BPM / 60

Frequency = 65 / 60

Frequency ≈ 1.083 Hz

To find the period for each heartbeat in seconds, we need to find the reciprocal of the frequency, which gives the time duration for one complete cycle.

Period = 1 / Frequency

Period = 1 / 1.083

Period ≈ 0.922 seconds per beat

In a futuristic scenario, you are assigned the mission of making an enemy satellite that is in a circular orbit around Earth inoperative. You know you cannot destroy the satellite, as it is well protected against attack, but you can try to knock it out of its orbit so it will fly away and never return. What is the minimum amount of work applied to the satellite that is required to accomplish that? The satellite's mass and altitude are 993 kg and 227 km. Earth's mass and radius are 5.98×10^24 kg and 6370 km.

Answers

The minimum amount of work required to make the enemy satellite inoperative and push it out of its circular orbit is 6.972 × 10^9 joules.

To calculate the minimum amount of work required to knock the satellite out of its circular orbit, we need to determine the change in kinetic energy required to change the satellite's velocity. This change in kinetic energy can be calculated using the conservation of energy, which states that the total energy in a closed system remains constant.

The kinetic energy of an object in motion can be expressed as:

K = (1/2)mv^2

Where:

K = Kinetic energy

m = Mass of the object

v = Velocity of the object

To determine the velocity of the satellite, we can use the following formula:

v = sqrt(GM/r)

Where:

G = Universal gravitational constant = 6.6743 × 10^-11 N m^2/kg^2

M = Mass of the Earth = 5.98×10^24 kg

r = Altitude of the satellite above the Earth's surface + radius of the Earth = 6,997 km

v = sqrt(6.6743 × 10^-11 × 5.98×10^24 / 6,997×10^3) = 7,650 m/s

To change the satellite's velocity, we need to calculate the new velocity required to push the satellite out of its circular orbit. We can use the following formula to calculate the escape velocity required to leave the Earth's gravitational field:

Ve = sqrt(2GM/r)

Ve = sqrt(2 × 6.6743 × 10^-11 × 5.98×10^24 / 6,997×10^3) = 11,186 m/s

To calculate the change in kinetic energy required to change the satellite's velocity from its initial velocity to the escape velocity, we can use the following formula:

ΔK = (1/2)m(Δv)^2

Where:

ΔK = Change in kinetic energy

m = Mass of the satellite

Δv = Change in velocity required to reach escape velocity = Ve - v

Δv = 11,186 m/s - 7,650 m/s = 3,536 m/s

ΔK = (1/2) × 993 kg × (3,536 m/s)^2 = 6.972 × 10^9 J

Therefore, The adversary spacecraft must be rendered inoperable and forced out of its elliptical orbit with a minimum of 6.972 × 10^9 joules of work.

To learn more about momentum and  impulse equations click:

brainly.com/question/30101966

#SPJ1

An object travels at a constant speed of 10m/ s for 10s. During the next 5s, it accelerates
uniformly to 20m/ s.
0
20
10
0
5 10 15
speed
m/ s
time / s
What is the total distance travelled by the object?
A 150m B 175m C 200m D 300

Answers

The total distance travelled by the object is 175 m.

option B.

What is the total distance travelled by the object?

The total distance travelled by the object is calculated by applying the following kinematic equation as shown below;

Total distance = area rectangle + area of triangle

Total distance = (15 s - 0 s) x (10 m/s - 0 m/s) + ¹/₂(5s)((10 m/s)

Total distance = (15s)(10 m/s) + (5s )(5 m/s)

Total distance = 150 m + 25 m

Total distance = 175 m

Thus, the total distance travelled by the object is sum of all the distance covered from 0 second to 15 seconds.

Learn more about total distance here:https://brainly.com/question/29409777

#SPJ1

Determine the magnitude of current in the 6 Ω resistor shown in Figure 3 if emf 1 has
an internal resistance of 1 Ω and emf 2 has an internal resistance of 0.2 Ω.

Answers

The magnitude of current in the 6Ω resistor is 0.72A.

EMF stands for electromotive force, which is the energy supplied by a source (such as a battery or generator) per unit of charge that passes through it, measured in volts. It represents the potential difference between the two terminals of the source when it is not connected to any circuit.

From the circuit diagram, we can see that the current flowing through the 6Ω resistor can be found by using Ohm's Law:

V = IR

where V is the voltage across the 6Ω resistor, I is the current flowing through it, and R is the resistance of the resistor.

To find V, we need to use Kirchhoff's Voltage Law (KVL) to determine the total voltage drop across the circuit. Starting from the top left corner and moving clockwise, we have:

V1 (emf) = IR1 + V2 (emf)

V2 (emf) - IR2 - IR1 = 0

Substituting V2 = -IR2 - 0.2I (since emf 2 has an internal resistance of 0.2Ω) into the first equation, we get:

V1 = I(R1 + R2 + 1) + 0.2I

Simplifying, we get:

V1 = I(7Ω) + 0.2I

Now we can solve for I:

I = V1 / (7Ω + 0.2Ω)

I = V1 / 7.2Ω

To find V1, we can use KVL again, starting from the bottom left corner and moving clockwise:

V1 - IR1 - V2 = 0

V1 - IR1 - (IR2 + 0.2I) = 0

Substituting V2 = -IR2 - 0.2I, we get:

V1 = I(R1 + R2 + 0.2) = I(7.2Ω)

Now we can substitute this expression for V1 into the equation for I:

I = (I(7.2Ω)) / (7Ω + 0.2Ω)

Simplifying, we get:

I = 0.72A

Therefore, the magnitude of current in the 6Ω resistor is 0.72A.

To learn more about Kirchhoff's rules click:

https://brainly.com/question/30201571

#SPJ1

3. Which energy resource is used to generate electricity without using any moving parts? A. geothermal B. hydroelectric C. nuclear D. solar​

Answers

Answer: Solar

Explanation: This is simple enough the only one of these options that do not require a pump or power plant is solar which is usually attained with a non-moving solar panel

hope this helps :)

D. Solar…………….hope this helps

A 250 kg cart starts from rest and rolls down an inclined plane from a height of 550 m. Determine its speed at a height of 125 m above the bottom of the incline. Please round to two decimal places.

Answers

Answer:

24.85 m/s.

Explanation:

PE = mgh = 250 kg x 9.81 m/s^2 x 550 m = 1,358,725 J

PE' = mgh' = 250 kg x 9.81 m/s^2 x 125 m = 308,062.5 J

PE = KE

1,358,725 J = 0.5mv^2

Solving for v, we get:

v = sqrt(2PE/m) = sqrt(2 x 1,358,725 J / 250 kg) = 59.15 m/s (rounded to two decimal places)

PE' + KE' = PE + KE

Since the cart starts from rest at the top of the incline, KE = 0. Therefore:

PE' = KE'

mgh' = 0.5mv'^2

Solving for v', we get:

v' = sqrt(2gh') = sqrt(2 x 9.81 m/s^2 x 125 m) = 24.85 m/s (rounded to two decimal places)

Therefore, the speed of the cart at a height of 125 m above the bottom of the incline is 24.85 m/s.

Most meteorites that enter the Earth's atmosphere burn up before they reach the Earth itself. When this happens, lots of energy is transferred from the meteorites' __________ energy stores very quickly. What one word completes the sentence

Answers

Most meteorites that enter the Earth's atmosphere burn up before they reach the Earth itself. When this happens, lots of energy is transferred from the meteorites' kinetic energy stores very quickly.

The kinetic energy storage of meteorites are communicated to the surrounding environment as heat, sound, and light energy.

A meteorite penetrates the atmosphere of the Earth. Friction acts on the meteorite when it reaches the Earth's atmosphere. When a meteorite enters the Earth's atmosphere, it gains kinetic energy. The meteorite catches fire due to friction. At this time, the meteorite's kinetic energy will be transformed into heat energy, sound energy, and light energy.

Hence kinetic word word completes the sentence.

To know more about meteorites :

https://brainly.com/question/1207919

#SPJ1

Other Questions
1. [0. 6/2 Points] DETAILS PREVIOUS ANSWERS MY NOTES ASK YOUR TEACHER Problem 6-23 Consider a random experiment involving three boxes, each containing a mixture of red and green balls, with the following quantities: Box A Box B Box C 31 Red Balls 12 Red Balls 24 Red Balls 16 Green Balls 20 Green Balls 16 Green Balls The first ball will be selected at random from box A. If that ball is red, the second ball will be drawn from box B; otherwise, the second ball will be taken from box C. Let R1 and G1 represent the color of the first ball, R2 and G2 the color of the second. Determine the following probabilities. (Hint: The conditional probability identity will not work. ) (a) Pr[Ru]= 65957 (b) Pr[G]= 340425 (c) Pr[R2 | Ri]=. 247338 X (d) Pr[R2 | Gi]= (e) Pr[G2 | Gi]= (f) Pr[G2 | R]= A nurse is caring for a trauma victim who has experienced a significant blood loss. Immediately following multiple transfusions, what is the most accurate indicator of oxygenation?Pulse oximetryHemoglobin and hematocrit (H and H)Complete blood count (CBC)Arterial blood gases (ABGs) What happened after the Chinese Exclusion Act was passed? Find the area of the triangle. From the sample statistics, find the value of -, the point estimate of the difference of proportions. Unless otherwise indicated, round to the nearest thousandth when necessary. n1 = 100 n2 = 100 = 0.12 = 0.1 A. 0.22 B. none of these C. 0.02 D. 0.012 E. 0.002 A radioactive element has decayed to 1/32 of its original concentration in 10 yrs. What is the half-life of this element? What should Mr. Karteris be told if one of these interacting meds such as a benzodiazepine for anxiety must be prescribed for him? You decided that price will be the determining factor in choosing a new ERP system. You select the option with the lowest price. The executive team likes the price tag, but soon you realize that the cost was so low because every phase of the project requires additional charges for customer support As your team begins working on the migration to the new module, you discover a compatibility problem between the new POS system and the old inventory management system that you were planning on replacing later. After a great deal of research and with limited support from your new vendor, you realize you have two options: replace the inventory management system at the same time, or invest some money into adapting the old system so it will work until you can replace it later Consider the Bohr model of the atom. Which transition would correspond to the largest wavelength of light absorbed? Select one: O n=2 to n=6 n=6 to n=10 O n=1 to n=5 O n=6 to n=3 O n=4 to n=1 Which information supports the appropriateness of a nursing diagnosis?A. Defining characteristicsB. Planning interventionsC. Diagnostic statementD. Related risk factors What is the sum of 8 of the interior angles of a regular nonagon? What is a dispensing pin used for?Select one:To protect the syringe cap from contaminationTo transfer the contents of one syringe to anotherTo prevent coring when a vial is punctured multiple timesTo filter shards of glass when withdrawing fluid from an ampule depreciation expense is in what broad category of expenditures? multiple choice tax expenditures operating expenses debt interest expense general and administrative expenses in the 1960s, the bureau of narcotics and dangerous drugs faced widespread disregard of drug laws by large numbers of young people who A rich school has 48 players on the football team. The summary of the players' weight is even in the box plot. What is the median weight of the players 173 2016 240 TO 249 - 150 160 170 180 190 200 220 220 230 240 250 260 270 00 Wecht on pound Answer all Tables Keypad Keyboard Shortcuts pounds What are the trigger points for myofascial pain syndrome? In an example of ____________________, people are more likely to take risks when they are trying to avoid a loss than when they are trying to achieve a gain. Presenting information differently can change the decision a person makes.Framing Factor the following monomial completely: 9xy(-3)(-3)(x)(x)(y) (y)prime(3)(3)(x)(y) (y)(9)(x)(x)(y) (y) designated employee break area must do all of the following except a) Allow the employee to eat during a break b) Protect the stored food c) Allow the employee to smoke inside d) Protect the food prep area 10-6x