If a student bikes at a pace of 5.0 m/s down a straight route. The student's bicycle weighs 120 kg in total. The pupil puts on the brakes and comes to a stop. The average braking force of the automobile would be 150 newtons if the stopping distance were 10 meters.
What is Newton's second law?Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum.
Work done by the braking force of the cycle = change in kinetic energy of the student
Force × distance = 1/2 × mass × velocity²
F = 0.5 x 120 x 5² / 10
F = 150 Newtons
Thus, the average braking force of the cycle would be 150 Newtons.
Learn more about Newton's second law, here , refer to the link ;
brainly.com/question/13447525
#SPJ1
2. During which Epoch did humans first appear?Holocene3. How many million years ago did humans first appear?2.8 million years ago4. What are the three periods of the Mesozoic Era?Cretaceous, Jurassic, Triassic5. When did dinosaurs first appear?Triassic period6. In what period did birds first appear?Jurassic7. During what period did the dome-like uplift of the Adirondack region begin?
(1)
The three eras within the Phanerozoic eon are
1) The Paleozoic era (541 million to 252 million years ago)
2) The Mesozoic era (252 million to 66 million years ago)
3) The Cenozoic era (66 million years ago to the present)
What is the shortest distance in which you can stop, after the brakes are applied, without the groceries sliding off the seat? The static and kinetic coefficients of friction are, respectively, 0.65 and 0.45. Assume that the surface of the seat is horizontal.
The shortest distance in which you can stop, after the breaks are applied is 80.38 m.
What is the shortest distance you can stop?The shortest distance in which you can stop is calculated by applying the principle of conservation of energy and work energy principle.
K.E = ¹/₂mv²
where;
K.E is your kinetic energy
m is your mass
v is your speed
The work done by force of friction before you stop is calculated as follows;
W = Ffx
where;
Ff is the frictional forcex is the shortest distance you can stopW = (μmg)x
where;
μ is coefficient of kinetic frictionW = K.E
(μmg)x = ¹/₂mv²
(μg)x = ¹/₂v²
x = (v²) / (2μg)
x = (32²) / (2 x 0.65 x 9.8)
x = 80.38 m
Thus, the shortest distance in which you can stop, after the breaks are applied is determined by applying the principle of conservation of energy.
Learn more about conservation of energy here: https://brainly.com/question/166559
#SPJ1
The complete question is below:
Your are driving at 32 m/s, what is the shortest distance in which you can stop, after the brakes are applied, without the groceries sliding off the seat? The static and kinetic coefficients of friction are, respectively, 0.65 and 0.45. Assume that the surface of the seat is horizontal.
A car with a mass of 1180 kilograms is being driven at 18.2 meters per second when it runs into a tree. What is the change in kinetic energy of the car? Include units in your answer. Answer must be in 3 significant digits.
The kinetic energy formula is
[tex]K=\frac{1}{2}mv^2[/tex]Where m = 1180 kg and v = 18.2 m/s.
[tex]K=\frac{1}{2}\cdot1180\operatorname{kg}\cdot(18.2\cdot(\frac{m}{s}))^2=195,431.6J[/tex]Therefore, the kinetic energy is 195,431.6 Joules.
A construction worker pushes a wheelbarrow 5.0 m with a horizontal force of 250.0 N. How much work is done by the worker on the wheelbarrow
Given data
*A construction worker pushes a wheelbarrow at a distance is d = 5.0 m
*The given horizontal force is F = 250.0 N
The formula for the work is done by the worker on the wheelbarrow is given as
[tex]W=F\times d[/tex]Substitute the known values in the above expression as
[tex]\begin{gathered} W=(250.0)(5.0) \\ =1250\text{ J} \end{gathered}[/tex]Hence, the work done by the worker on the wheelbarrow is W = 1250 J
A student makes the following claim, "Acceleration is when an object changes speed, so it can be discussed as a scalar quantity." Explain the error in the student's claim. Provide an example of each quantity to support your answer.
A student makes the following claim, "Acceleration is when an object changes speed, so it can be discussed as a scalar quantity." The error here is that acceleration is said to be done when either speed of that object changes or direction of that object changes. Hence , acceleration is not a scaler quantity.
Scalar quantities are quantities that only have a magnitude and do not have any direction
A vector quantity is defined as the physical quantity that has magnitude as well as directions associated to it.
Acceleration is said to be occurred in two cases :
when the object changes its speed
or when the object changes its direction
since , acceleration depends upon both direction as well as magnitude ,hence it is a vector quantity not a scaler quantity.
for example : a stone attached to a string moving in a circular motion at a constant speed will be considered in accelerated motion because it is constantly changing its direction. Here we can see speed is constant hence magnitude (value of speed) is not changing but direction of the stone is changing . since , direction is changing the object is said to be in accelerated motion.
To learn more about acceleration here :
brainly.com/question/2303856
#SPJ1
what is electric power
Answer:
Definition- Electric power is the rate at which electrical energy is transferred by an electric circuit.
Answer:
the rate at which electrical energy is transferred by an electric circuit.
Explanation:
how a baby monster could have one eye even if both parents had two eyes.
Answer:
Both parents could be heterogeneous: Hh.
Explanation:
Both parents could be heterogeneous.
Both parents are Hh.
H = 2 eyes , dominant trait
h = one eye, recessive trait
The childs genotype is hh.
True/False: The only difference between how electricity is produced at a coal plant and at a nuclear reactor is the type of fuel used to heat the water to steam. Select one:TrueFalse
To determine whether the given statement is true/false.
Explanation:
In nuclear reactors, after nuclear fission, energy is generated in the form of heat. This heat is used convert water steam.
In coal plant, burning coal produces steam.
Thus, the statement is true.
. Chloe performed an experiment on the amount of a certain gas that can be dissolved in water at different temperatures. Her data from the experiment is shown on the graph below. What type of function would best fit this set of data?
The values on the curve corresponding to the y axis are the y values
The values on the curve corresponding to the x axis are the x values
We would pick corresponding x and y values on the graph and compare them
On the graph, each small square represents 1 unit on both axes.
If x = 1, y = 1
If x = 4, y = 2
if x = 9, y = 3
We know that the square root of 1 is 1, the square root of 4 is 2 and the square root 9 is 3. This means that
y is the square root of x
The function is
[tex]y\text{ = }\sqrt[]{x}[/tex]Thus, it is a square root function
The first option is correct
A ball is thrown directly downward with an initial speed of 8.45 m/s, from a height of 29.9 m. After what time interval does it strike the ground? s
Given:
The initial speed of the ball is: u = 8.45 m/s.
The ball is thrown from the height: h = 29.9 m
To find:
The time ball takes to strike the ground.
Explanation:
The time taken by the ball to strike the ground can be determined by using the following equation.
[tex]x=ut+\frac{1}{2}at^2[/tex]Here, x = -29.9 m, u = -8.45 m/s and a = -9.8 m/s^2. The negative sign indicates that the ball is falling in the downward direction.
Substituting the values in the above equation, we get:
[tex]\begin{gathered} -29.9=-8.45t-\frac{1}{2}\times9.8t^2 \\ \\ 4.9t^2+8.45t-29.9=0 \end{gathered}[/tex]Solving the above quadratic equation, we get:
t = 1.754 s and t = -3.478 s
But the time is never negative, thus t = 1.754 s.
Final answer:
The ball takes 1.754 seconds to strike the ground.
In which direction does the tension force on the pirate point when a gust of wind rises up?
Answer: For downwind sailing, with the sail oriented perpendicular to the wind direction, the pressure increase on the upwind side is greater than the pressure decrease.
Explanation: this is all i know
Identify the following examples of forces as either a contact force or a non-contact force:
Given:
Different kinds of forces
To find:
Identify the contact forces and non-contact forces
Explanation:
A force that acts between two surfaces in contact is a contact force, while the force that acts between the two surfaces, not in contact, is a non-contact force.
The contact forces here are:
Sitting on a chair (friction)
Skateboard slows down on a rough surface (friction)
Slamming the door (friction)
Non-contact forces:
Magnet attracting paper clips (magnetic force)
Two like charges repel each other (electrostatic force)
When A peach falls from a tree (gravitational force)
Use the data that you have for the air-filled tube. The tube is closed at one end.• Make a drawing of the standing wave in the tube when you have two, three, and four nodes or peaks. These will correspond to the first, second, and third overtones.• For each standing wave, label the nodes and the antinodes.• Label and record the distance in meters of the half wavelength (λ/2) for each standing wave.• Explain how the standing wave occurs.
Part 1)
When a standing wave oscilates in an air-filled tube closed at one end and open at the other, the closed end is a node and the open end is an antinode. Then, the diagram of the wave inside the tube looks like the following:
Part 2)
The nodes are the points where the two curves intersect (darker regions) and the antinodes are the clearer regions.
Part 3)
In each wave on the diagram, the distance between two consecutive nodes or two consecutive antinodes is the same as half the wavelength.
Part 4)
The standing waves arise from the combination of reflection and interference of waves inside the air column when the wavelengths match the length of the tube in such a way that the open end is an antinode and the closed end is a node.
If you see an object following a curve path, you can safely assume:There is a net force being applied The net force is zero
If an object is following a curve, it means that it is changing direction. This change in direction will cause a change in velocity. Change in velocity causes acceleration. Since the velocity keeps changing, the acceleration is not zero. This also means that the net force is not zero. Therefore, you can safely assume:
There is a net force being applied
An 1,810 W toaster, a 1,340 W electric frying pan, and an 85 W lamp are plugged into the same outlet in a 15 A, 120 V circuit. (The three devices are in parallel when plugged into the same socket.)(a) What current (in A) is drawn by each device?Itoaster= AIpan= AIlamp= A
ANSWER
• I(toaster) = 15.08 A
,• I(pan) = 11.17 A
,• I(lamp) = 0.71 A
EXPLANATION
Given:
• The toaster's power, P(toaster) = 1810 W
,• The frying pan's power, P(pan) = 1340 W
,• The lamp's power, P(lamp) = 85 W
,• The total current supported by the circuit, I = 15 A
,• The voltage of the circuit, V = 120 V
Find:
• The current across each device
Power is the product of current and voltage,
[tex]P=I\cdot V[/tex]We know that all three devices are connected in parallel, which means that they all have the same voltage, 120 V.
Solving the equation above for I,
[tex]I=\frac{P}{V}[/tex]So, for each device,
[tex]I_{toaster}=\frac{P_{toaster}}{V}=\frac{1810W}{120V}\approx15.08A[/tex][tex]I_{pan}=\frac{P_{pan}}{V}=\frac{1340W}{120V}\approx11.17A[/tex][tex]I_{lamp}=\frac{P_{lamp}}{V}=\frac{85W}{120V}\approx0.71A[/tex]Hence, the current drawn by each device is:
• I(toaster) = 15.08 A
,• I(pan) = 11.17 A
,• I(lamp) = 0.71 A
A 22-pound force that makes an angle of 12° with an inclined plane is pulling a box up the plane. The inclined plane makes a 25° angle with the horizontal. What is the magnitude of the effective force pulling the box up the plane?
We will ave that the effective force is:
[tex]\begin{gathered} F=(22Lb)cos(12)\Rightarrow F=21.51924722...Lb \\ \\ \Rightarrow F\approx21.52Lb \end{gathered}[/tex]So, the effective force is 21.52 Pounds.
Moments after making the dreaded decision to jump out the door of the airplane, Darin's 75.5-kg body experiences +128 N of air resistance upward. Determine Darin's acceleration (in m/s^2) at this instant in time.Hint: Your answer will be negative since he is falling (i.e., his acceleration is still in the down direction). Answer: ________ m/s^2
Given:
The mass of the Darin is m = 75.5 kg
The air resistance is
[tex]F_a=128\text{ N}[/tex]Required: Darin's acceleration.
Explanation:
According to Newton's second law, the downward force will be
[tex]F_g=\text{ mg}[/tex]Here, g = -9.8 m/s^2 is the acceleration due to gravity.
On substituting the values, the downward force will be
[tex]\begin{gathered} F_g=75.5\times(-9.8) \\ =\text{ -739.9 N} \end{gathered}[/tex]The net force will be
[tex]\begin{gathered} F_{net}=\text{ F}_g+F_a \\ =-739.9+128 \\ =-611.9\text{ N} \end{gathered}[/tex]Final Answer: Darin's acceleration is -611.9 N
Please read the photo, Skill practice; how can you classify different types of energy?
There are 3 types of energy:
Kinetic energy(KE): energy of moving objects
Potential energy(PE): energy that an object has stored, position energy
Mechanical energy: The sum of both. PE+KE
A car initially traveling at 3.2 m/s accelerated uniformly to a speed of 14.9 m/s over a distance of 60 meters. How much time does it take for the car to reach 9 m/s? Report your answer to 1 decimal place. Do not type in the unit or the computer will mark your answer incorrect.
Given
Initial velocity, u=3.2 m/s
Final speed , v=14.9 m/s
Distance travelled, s=60 m
To find
Time taken to reach 9 m/s
Explanation
By equation of kinematics,
[tex]\begin{gathered} v^2=u^2+2as \\ \Rightarrow14.9^2=3.2^2+2a\times60 \\ \Rightarrow222.01=10.24+12a \\ \Rightarrow a=17.65\text{ m/s}^2 \end{gathered}[/tex]Let the time taken to reach 9 m/s be t
Thus
taking v=9 m/s here we have
[tex]\begin{gathered} v=u+at \\ \Rightarrow9=3.2+17.65t \\ \Rightarrow t=0.3\text{ s} \end{gathered}[/tex]Conclusion
The required time is 0.3 s
a power transmission line is used to transmit 100 kw of power at a voltage of 10 kv with a loss of 1 kw. if the voltage is increased to 200 kv, what is power loss (in watts) to transmit the same amount of power?
To transmit the same amount of electricity, there is a 2.5 W power loss.
What is power loss?A power loss is the difference in power between a device, piece of equipment, pump set, or process' input and output (Pv). Pumps, equipment, and procedures, as well as electrical and electronic devices, turn this undesirable loss into heat.
Consumers receive electric energy in different units than what power plants create. A fraction of the units is lost in the distribution network. This difference between the distributed and created units is referred to as transmission and distribution loss.
According to Ohm's law, power can be defined as
P = VI
Here,
V = Voltage
I = Current
replacing
100kW = 10WI
I = [tex]\frac{100}{10}[/tex]
I = 10 Amp
Now we can find the resistance
R = [tex]\frac{P_{LOSS} }{I^{2} }[/tex]
Replacing,
R = [tex]\frac{1000}{10^{2} }[/tex]
R = 10Ω
In the second state when the voltage is 200kv, we have,
I = [tex]\frac{100*10^{3} }{200*10^{3} }[/tex]
I= [tex]\frac{100000}{200000}[/tex]
I= 0.5 A
Now power loss,
[tex]P_{t}[/tex] = [tex]I^{2}[/tex]R
[tex]P_{t}[/tex] = ([tex]0.5^{2}[/tex]) (10)
[tex]P_{t}[/tex] = 0.25 *10
[tex]P_{t}[/tex] =2.5 W
As a result, 2.5W is needed to transport the same amount of electricity.
For more information on the power loss refer to the below link;
https://brainly.com/question/14633095
#SPJ4
A force of 10 Newtons is the only force exerted on a block, and the acceleration of the block is measured. When the same force is the only force exerted on a second block, the acceleration is three times as large. What can you conclude about the masses of the two blocks?
When the acceleration is three times as large, the mass of the new block will be one-third the initial mass.
What is the acceleration of the block?
The acceleration of the block is the rate of change of velocity of the block with time.
The magnitude of the acceleration of each block can be obtained by applying Newton's second law of motion as follows;
F = ma
m = F/a
where;
m is the mass of each blockF is the applied force = 10 Na is the acceleration of each block.When the acceleration is three times as large, the mass of the new block is calculated as;
m = F/3a
m = 1/3 (F/a)
new mass = one-third the initial mass
Thus, we can conclude that when the acceleration is three times as large, the mass of the new block will be one-third the initial mass.
Learn more about acceleration here: https://brainly.com/question/14344386
#SPJ1
Calculate the potential energy of a roller coaster when the coaster is at the top of a 107.1 meter high hill and has a mass of 2,078.1 kg when fully loaded with passengers.
Given:
The mass when fully loaded with passengers is m =2078.1 kg
The height is h = 107.1 m
To find the potential energy of the roller coaster.
Explanation:
The potential energy of the roller coaster is given by the formula
[tex]P\mathrm{}E\text{. =mgh}[/tex]Here, g= 9.8 m/s^2 is the acceleration due to gravity.
Substituting the values, the potential energy of the roller coaster will be
[tex]\begin{gathered} P\mathrm{}E\text{. = 2078.1}\times9.8\times107.1 \\ =2181132.198\text{ N} \end{gathered}[/tex]Final Answer: The potential energy of the roller coaster is 2181132.198 N
An x-ray with a wavelength of 3.5 × 10^-9 m travels with a speed of 3.0 × 10^8 m/s. What is the frequency of this electromagnetic wave? A.9.52 × 10^-1 Hz B.8.57 × 10^16 Hz C.1.17 × 10^-17 Hz D.1.05 Hz
Answer. B
Which of the following scientists discovered that atoms contain electrons?a. Daltonb. RutherfordC. Thomsond. Bohr
Until 1897, atom was thought as the fundemental particle. But in 1897 J.J Thompson discovered that the atoms contains electrons. He discovered during his experiment with cathod ray tube.
Thus the correct answer is option C.
A wave traveling on a Slinky® that is stretched to 4 m takes 4.97 s to travel the length of the Slinky and back again.(a) What is the speed (in m/s) of the wave? m/s
ANSWER
1.61 m/s
EXPLANATION
Given:
• The distance the Slinky is stretched, d = 4 m
,• The time it takes for the wave to travel the length mentioned before and back, t = 4.97 s
Find:
• The speed of the wave, v
We know that the wave takes 4.97 seconds to travel the 4 meters the Slinky was stretched and back, so it travels a total of 8 meters in that time. This means that the speed of the wave is,
[tex]v=\frac{2d}{t}=\frac{8m}{4.97s}\approx1.61m/s[/tex]Hence, the speed of the wave is 1.61 m/s.
What letter from the picture below represents the position of the maximum kinetic energy?
Given that a pendulum has a mean position as C, and two extreme points A and E.
We have to find the position of kinetic energy.
Here, the total energy is conserved. So, the sum of potential energy and kinetic energy is constant.
Potential energy increases with the increase in height.
At the extreme positions, A and E, potential energy are maximum and potential energy is zero at point C.
Also, Kinetic energy is zero is at points A and E.
As energy is conserved, Kinetic energy is maximum at point C and potential energy is zero.
A child and sled with a combined mass of 25.2 kg slide down a frictionless hill, starting at the top. The sled starts from rest and acquires a speed of 6 m/s by the time it reaches the bottom of the hill. What is the height (in m) of the hill?Answer: _________ m (round to the nearest hundredth)
Given:
The mass of the child and the sled is,
[tex]m=25.2\text{ kg}[/tex]The child acquires a speed at the bottom of the hill is,
[tex]v=6\text{ m/s}[/tex]To find:
The height of the hill
Explanation:
The potential energy at the top of the hill will be converted to the potential energy at the bottom of the hill. So for the hill of height 'h', we can write, the potential energy as
[tex]PE=mgh[/tex]The kinetic energy is
[tex]KE=\frac{1}{2}mv^2[/tex]So,
[tex]\begin{gathered} mgh=\frac{1}{2}mv^2 \\ h=\frac{v^2}{2g} \\ h=\frac{6^2}{2\times9.8} \\ h=1.84\text{ m} \end{gathered}[/tex]Hence, the height of the hill is 1.84 m.
Can you tell me the types of thermal processes and there meanings
Isothermal process: Temperature remains constant
Adiabatic process: No heat is exchanged to or from the system.
Isochoric process : Change in volume is zero.
ISobaric process : Pressure remains constant .
WILL MARK AS BRAINLIST!⚠️
Find the direction of this vector -22.2m, 12.6m
Answer:
Angle:
α = - 62°
Explanation:
Given:
Nₓ = 12.6 m
Ny = - 22.2 m
_________
α - ?
The direction of vector:
tg α = Ny / Nₓ
tg α = ( - 22.2 ) / 12.0 ≈ - 1.85
Angle:
α = arctg ( - 1.85) ≈ - 62°
The direction of the vector is [tex]\alpha=-62^o[/tex]. Given Components: Nₓ = 12.6 m and Ny = -22.2 m. The negative sign indicates that the angle is measured clockwise from the positive x-axis.
Finding the Tangent of Angle α:
- The tangent of an angle α can be calculated using the formula: tan(α) = opposite/adjacent. In this case, the opposite side is Ny, and the adjacent side is Nₓ. So, you have:
tan(α) = Ny / Nₓ
tan(α) = (-22.2) / 12.6 ≈ -1.85
Finding the Angle α:
- To find the angle α, you need to take the arctangent (inverse tangent) of the value you calculated above. This will give you the angle whose tangent is approximately -1.85:
α = arctan(-1.85)
α ≈ -62°
So, based on the given vector components Nₓ and Ny, the angle α is approximately -62 degrees.
The negative sign indicates that the angle is measured clockwise from the positive x-axis.
The angle obtained is in degrees. If you need the angle in radians, you could convert it using the relationship: radians = degrees × (π / 180).
To know more about vector:
https://brainly.com/question/16818924
#SPJ2
The current in the circuit shown is 5.0 A, and the resistor is 2.0 Ω. What is the potential across the battery? A.8.0 VB.2.5 VC.10 VD.3.0 V
Given:
The current is,
[tex]i=5.0\text{ A}[/tex]The resistance is,
[tex]R=2.0\text{ ohm}[/tex]To find:
The potential across the battery
Explanation:
Using Ohm's law, we can write the potential across the battery is,
[tex]\begin{gathered} V=iR \\ =5.0\times2.0 \\ =10\text{ V} \end{gathered}[/tex]Hence, the potential across the battery is 10 V.