2(4-2x)-5=-2(x+5)+8x

Answers

Answer 1

The equation 2(4-2x)-5=-2(x+5)+8x has a value of  1.3 for x

How to determine the solution to the equation?

From the question, the equation to solve is given as

2(4-2x)-5=-2(x+5)+8x

Rewrite the equation properly

This is represented by the following representation

2(4 - 2x) - 5=-2(x + 5) + 8x

Start by opening the brackets in the equation

So, we have the following equation

8 - 4x - 5 =-2x - 10 + 8x

Collect the like terms in the equation

So, we have the following equation

8x - 2x + 4x = 10 +8 - 5

Evaluate the like terms in the equation

So, we have the following equation

10x = 13

Divide both sides of the equation by 10

So, we have the following equation

x = 1.3

Hence, the solution to the equation for x is 1.3

Read mroe about equation at

https://brainly.com/question/2972832

#SPJ1


Related Questions

The graphs depict IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15 (as on the Wechsler IQ test).
a.find the Z score. Write that answer to the 2nd decimal place.
b. solve for x

Answers

The required Z-score with a value of 120 would be 1.33.

What is Z -score?

A Z-score is defined as the fractional representation of data point to the mean using standard deviations.

The given graph depicts IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15.

As per the given information, the solution would be as

ц = 100

σ = 15

X = 120 (consider the value)

⇒ z-score = (X - ц )/σ₁

Substitute the values,

⇒ z-score = (120 - 100)/15

⇒ z-score = (20)/15

⇒ z-score = 1.33

Thus, the required Z-score with a value of 120 would be 1.33.

Learn more about the z-score here:

brainly.com/question/13793746

#SPJ1

Help me please what is the probability of all the letters?

Answers

Given:

• Number of male who survived = 338

,

• Number if female sho survived = 316

,

• Number f children who survived = 57

,

• Number of male who died = 1352

,

• Number of female who died = 109

,

• Number of children who died = 52

,

• Total number of people = 2224

Let's solve for the following:

(a). Probability of the passenger that survived:

[tex]P(\text{survived)}=\frac{nu\text{mber who survived}}{total\text{ number if people }}=\frac{711}{2224}=0.320[/tex]

(b). Probability of the female.

We have:

[tex]P(\text{female)}=\frac{\text{ number of females}}{total\text{ number }}=\frac{425}{2224}=0.191[/tex]

(c). Probability the passenger was female or a child/

[tex]P(\text{female or child)}=\frac{425}{2224}+\frac{109}{2224}=\frac{425+109}{2224}=0.240[/tex]

(d). Probability that the passenger is female and survived:

[tex]P(femaleandsurvived)=\frac{316}{2224}=0.142[/tex]

(e). Probability the passenger is female and a child:

[tex]P(\text{female and child)=}\frac{425}{2224}\times\frac{109}{2224}=0.009[/tex]

(f). Probability the passenger is male or died.

[tex]P(male\text{ or died) = P(male) + }P(died)-P(male\text{ and died)}[/tex]

Thus, we have:

[tex]P(\text{male or died)}=\frac{1690}{2224}+\frac{1513}{2224}-\frac{1352}{2224}=0.832[/tex]

(g). If a female passenger is selected, what is the probability that she survived.

[tex]P(\text{survived}|\text{female)}=\frac{316}{425}=0.744[/tex]

(h). If a child is slelected at random, what is the probability the child died.

[tex]P(died|\text{ child)=}\frac{52}{109}=0.477[/tex]

(i). What is the probability the passenger is survived given that the passenger is male.

[tex]=\frac{338}{1690}=0.2[/tex]

ANSWER:

• (a). 0.320

,

• (b). 0.191

,

• (c). 0.240

,

• (d). 0.142

,

• (e). 0.009

,

• (f). 0.832

,

• (g) 0.744

,

• (h). 0.477

,

• (i) 0.2

When drawing a trendline, which statement is true?
A. All datasets have a trendline
B. All trendlines begin at the origin.
C. Trendlines can have a positive or negative association.
D. Trendlines have only positive associations.

Answers

Trendlines have only positive associations. Option D is correct.

Given that,
When drawing a trendline, which statement is true is to be determined.

What is the graph?

The graph is a demonstration of curves that gives the relationship between the x and y-axis.

Here,
Trendlines are the line that explains the drastic positive change in the graph,
So Trendline has only a positive association according to the statement mentioned above.

Thus,  trendlines have only positive associations. Option D is correct.

Learn more about graphs here:

brainly.com/question/16608196

#SPJ1

I need help with this question please. Just do question 1 please. Also this is just apart of a homework practice

Answers

Answer:

P(x) = 1.3x² + 0.1x + 2.8

Explanation:

We need to find an equation that satisfies the relationship shown in the table. So, let's replace x by 2 and then compare whether the value of p(x) is 8.2 or not

P(x) = 1.3x³ + 0.1x² + 2.8x

P(2) = 1.3(2)³ + 0.1(2)² + 2.8(2)

P(2) = 16.4

Since P(2) is 16.4 instead of 8.2, this is not a correct option

P(x) = 1.3x² + 0.2x - 2.8

P(2) = 1.3(2)² + 0.2(2) - 2.8

P(2) = 2.8

Since 2.8 and 8.2 are distinct, this is not the correct option

P(x) = 2.3x² + 0.2x + 1.8

P(x) = 2.3(2)² + 0.2(2) + 1.8

P(x) = 11.4

Since 11.4 and 8.2 are distinct, this is not the correct option

P(x) = 1.3x² + 0.1x + 2.8

P(2) = 1.3(2)² + 0.1(2) + 2.8

P(2) = 8.2

Therefore, this is the polynomial function for the data in the table.

So, the answer is P(x) = 1.3x² + 0.1x + 2.8

I think of a number.
I add 5 to it and then double the result.
I then subtract 10 from this answer.
I then subtract the original number I thought of.
Using algebra and a pronumeral to represent the number I think of, explain
why I get back to the number I started with.

Answers

Answer: [2(x + 5)] - 10 - x = 2x+10-10-x = 2x-x = x

Step-by-step explanation:

I think of a number, represented by the variable/pronumeral x.

I add 5 to it: x + 5

then double the result: 2(x + 5)

I then subtract 10 from this answer: [2(x + 5)] - 10

I then subtract the original number I thought of: [2(x + 5)] - 10 - x

Simplifying the expression will explain why you get the original number.

[2(x + 5)] - 10 - x = 2x+10-10-x = 2x-x = x.  

Given: Circle PB52°РMAD =mBD =mBAC =:: 52°.: 90°:: 128°:: 142°.: 232°:: 308°

Answers

From the circle given, it can be observed that AC is the diameter of the circle and it divides the circle into two equal parts. The total angle in a semi-circle is 180°. It then follows that

[tex]arcAD+arcDC=arcAC[/tex][tex]\begin{gathered} \text{note that} \\ arcAC=180^0(\text{angle of a semicircle)} \\ arcDC=90^0(\text{given)} \end{gathered}[/tex][tex]\begin{gathered} \text{Therefore,} \\ arcAD+arcDC=arcAC \\ arcAD+90^0=180^0 \\ arcAD=180^0-90^0 \\ arcAD=90^0 \end{gathered}[/tex][tex]\begin{gathered} \text{From the circle, it can be seen that:} \\ arcBD=arcBA+arcAD \\ \text{note that } \\ arcBA=52^0(\text{given)} \\ arcAD=90^0(\text{calculated earlier)} \end{gathered}[/tex][tex]\begin{gathered} \text{Therefore,} \\ arcBD=52^0+90^0 \\ arcBD=142^0 \end{gathered}[/tex][tex]\begin{gathered} \text{From the given circle, it can be seen that} \\ arcBA+arcAD+arcDC=arc\text{BAC} \end{gathered}[/tex][tex]\begin{gathered} \text{Therefore,} \\ 52^0+90^0+90^0=\text{arcBAC} \\ 232^0=\text{arcBAC} \end{gathered}[/tex]

Hence, arcAD = 90°, arc BD = 142°, and arc BAC = 232°

Use the method of equating coefficients to find the values of a, b, and c: (x + 4) (ar²+bx+c) = 2x³ + 9x² + 3x - 4.A. a = -2; b= 1; c= -1OB. a=2; b= 1; c= 1OC. a=2; b= -1; c= -1OD. a=2; b= 1; c= -1

Answers

To find the coefficients we first need to make the multipliation on the left expression:

[tex]\begin{gathered} (x+4)(ax^2+bx+c)=ax^3+bx^2+cx+4ax^2+4bx+4c \\ =ax^3+(4a+b)x^2+(4b+c)x+4c \end{gathered}[/tex]

Then we have:

[tex]ax^3+(4a+b)x^2+(4b+c)x+4c=2x^3+9x^2+3x-4[/tex]

Two polynomials are equal if and only if their coefficients are equal, this leads to the following equations:

[tex]\begin{gathered} a=2 \\ 4a+b=9 \\ 4b+c=3 \\ 4c=-4 \end{gathered}[/tex]

From the first one it is clear that the value of a is 2, from the last one we have:

[tex]\begin{gathered} 4c=-4 \\ c=-\frac{4}{4} \\ c=-1 \end{gathered}[/tex]

Plugging the value of a in the second one we have:

[tex]\begin{gathered} 4(2)+b=9 \\ 8+b=9 \\ b=9-8 \\ b=1 \end{gathered}[/tex]

Therefore, we conclude that a=2, b=1 and c=-1 and the correct choice is D.

The maintenance department at the main campus of a large state university receives daily requests to replace fluorescent lightbulbs. The distribution of the number of daily requests is bell-shaped and has a mean of 37 and a standard deviation of 10. iS Using the 68-95-99.7 rule, what is the approximate percentage of lightbulb replacement requests numbering between 37 and 67?

Answers

Answer: 49.85%

Explanation:

From the information given,

mean = 37

standard deviation = 10

The 68-95-99.7 rule states that 68% of the data fall within 1 standard deviation of the mean. 95% of the data fall within 2 standard deviations of the mean and 99.7% of the data fall within 3 standard deviations of the mean. Thus,

1 standard deviation to the left of the mean = 37 - 10 = 27

1 standard deviation to the right of the mean = 37 + 10 = 47

3 standard deviation to the left of the mean = 37 - 3(10) = 37 - 30 = 7

3 standard deviations to the right of the mean = 37 + 3(10) = 37 + 30 = 67

We can see that the percentage of lightbulb replacement requests numbering between 37 and 67 falls within 3 standard deviations to the right of the mean. This is just half of the area covered by 99.7%. Thus

The percentage of lightbulb replacement requests numbering between 37 and 67

= 99.7/2 = 49.85%

The instructions are: Write,evaluate,graph on a Number Line the following inequalities:Six increased by twice a number is no more than 20.

Answers

• Given the description "Six increased by twice a number is no more than 20", you need to know the following:

- In this case, the word "increased" indicates an Addition.

- The word "twice" indicates a Multiplication by 2.

- "No more than" indicates that six increased by twice a number must be less than or equal to 20.

- The inequality symbol whose meaning is "Less than or equal to" is:

[tex]\leq[/tex]

Knowing the information shown before, you can write the following expression to represent "Six increased by twice a number" (Let be "x" the unknown number):

[tex]6+2x[/tex]

Therefore, you can write the following inequality that models the description given in the exercise:

[tex]6+2x\leq20[/tex]

• Now you need to solve it:

1. Apply the Subtraction Property of Inequality by subtracting 6 from both sides of the inequality:

[tex]\begin{gathered} 6+2x-(6)\leq20-(6) \\ \\ 2x\leq14 \end{gathered}[/tex]

2. Apply the Division Property of Inequality by dividing both sides of the inequality by 2:

[tex]\begin{gathered} \frac{2x}{2}\leq\frac{14}{2} \\ \\ x\leq7 \end{gathered}[/tex]

• In order to graph the solution on a Number Line, you can follow these steps:

- Since the inequality symbol indicates that "x" is less than 7, it indicates that 7 is included in the solution. Therefore, you must draw a closed circle over that value.

- Draw a line from the circle to the left.

Then, you get:

Hence, the answer is:

- Inequality:

[tex]6+2x\leq20[/tex]

- Solution:

[tex]x\leq7[/tex]

- Number Line:

Consider the following loan. Complete parts (a)-(c) below.An individual borrowed $67,000 at an APR of 3%, which will be paid off with monthly payments of 347$ for 22 years.a. Identify the amount borrowed, the annual interest rate, the number of payments per year, the loan term, and the payment amount.The amount borrowed is $____ the annual interest rate is ____, the number of payments per year is _____, the loan term is _____ years, and the payment amount is _____$  b. How many total payments does the loan require? What is the total amount paid over the full term of the loan?There are ____ payments toward the loan and the total amount paid is ____$  c. Of the total amount paid, what percentage is paid toward the principal and what percentage is paid for interest?The percentage paid toward the principal is _____% and the percentage paid for interest is ____%.(Round to the nearest tenth as needed.)

Answers

a) The amount borrowed is $67,000 the annual interest rate is 3%, the number of payments per year is 12, the loan term is 22 years, and the payment amount is $347

b) There are 12 payments per year for 22 years; multiply 12 by 22 to get the total number of payments:

[tex]12\times22=264[/tex]

To find the total amount paid, multiply the number of payments by the payment amount:

[tex]264\times347=91,608[/tex]

There are 264 payments toward the loan and the total amount paid is $91,608

c) Toward principal: $67,000

Toward interest: subtract the principal from the payment amount:

[tex]91,608-67,000=24,608[/tex]

Let 91,608 be the 100%, use a rule of three to find the % corresponding to the principal and interest:

[tex]\begin{gathered} Principal: \\ x=\frac{67,000\times100}{91,608}=73.1 \\ \\ Interest: \\ x=\frac{24,608\times100}{91,608}=26.9 \end{gathered}[/tex]The percentage paid toward the principal is 73.1% and the percentage paid for interest is 26.9%

help meeeee pleaseeeee!!!





thank you

Answers

The values of f(4) , f(0) and f(-5) are 16/7, -12 and -7/11 respectively.

We are given the function:-

f(x) = (x + 12)/(2x - 1)

We have to find the values of  f(4) , f(0) and f(-5).

Putting x = 4 in the given function, we can write,

f(4) = (4+12)/(2*4-1) = 16/7

Putting x = 0 in the given function, we can write,

f(0) = (0 + 12)/(2*0 - 1) = 12/(-1) = -12

Putting x = -5 in the given function, we can write,

f(-5) = (-5 + 12)/(2*(-5) - 1) = 7/(-10-1) = 7/(-11) = -7/11

To learn more about function, here:-

https://brainly.com/question/12431044

#SPJ1

Kindly help by providing answers to these questions.

Answers

Graph of proportional relationship is given y =kx , answer of the following questions are as follow:

1. Based on the information ,the constant of proportionality represents the multiplicative relationship between two quantities.

2. Variable represents the constant of proportionality is k.

As given in the question,

Graph represents proportional relationship is given by:

y = kx

⇒ k = y/x

Represents the multiplicative relationship between the variables y and x.

1. Based on the information , the constant of proportionality represents the multiplicative relationship between two quantities.

'k' is the scale factor represents the constant of proportionality.

2. Variable represents the constant of proportionality is k.

Therefore, graph of proportional relationship is given y =kx , answer of the following questions are as follow:

1. Based on the information , the constant of proportionality represents the multiplicative relationship between two quantities.

2. Variable represents the constant of proportionality is k.

Learn more about graph here

brainly.com/question/17267403

#SPJ1

1.23 × 10 to the 5th power
=

Answers

Answer:

1.23 x 10 to the 5th power is 123,000.

Step-by-step explanation:

math.

The answer is 123000

Which comparison is NOT correct?2 > -3-7 < -5-9 < 10 < -4

Answers

0 > -4 is incorrect

as -4 is a negative number and it comes on the left of 0 on a number line

and we know number increase from left to right

so option D is the answer.

A typical soda can has a diameter of 5.3 centimeters and height of 12 centimeters. How many square centimeters of aluminum is needed to make the can? My answer is 244. I am confused how I got the answer.

Answers

The can is made up of aluminium.

So the area of the can must be equal to the area of the Aluminium sheet.

The can is in the form of a cylinder with diameter (d) 5.3 cm, and height (h) 12 cm.

Then its area is calculated as,

[tex]\begin{gathered} A=\pi d(\frac{d}{2}+h) \\ A=\pi(5.3)(\frac{5.3}{2}+12) \\ A=243.9289 \\ A\approx244 \end{gathered}[/tex]

Thus, the area of the Aluminium sheet required is 244 square centimeters.

if f(x)=-2x-3, find f(-1)

Answers

Solve;

[tex]\begin{gathered} f(x)=-2x-3 \\ f(-1)=-2(-1)-3 \\ f(-1)=2-3 \\ f(-1)=-1 \end{gathered}[/tex]

The answer is -1

That is f(-1) = -1

What are all of the answers for these questions? Use 3 for pi. Please do not use a file to answer, I cannot read it.

Answers

The company's sign has two(2) congruent trapezoids and two(2) congruent right angled triangle.

The area of the figure is:

[tex]A_{\text{figure}}=2A_{\text{trapezoid}}+2A_{\text{triangle}}[/tex]

The area of a trapezoid is given by the formula:

[tex]\begin{gathered} A_{\text{trapezoid}}=\frac{1}{2}(a+b)h \\ \text{where a and b are opposite sides of the trapezoid} \\ h\text{ is the height} \end{gathered}[/tex]

Thus, we have:

[tex]\begin{gathered} A_{\text{trapezoid}}=\frac{1}{2}(1\frac{1}{2}+3)2 \\ A_{\text{trapezoid}}=\frac{1}{2}(1.5+3)2 \\ A_{\text{trapezoid}}=\frac{1}{2}\times4.5\times2=4.5m^2 \end{gathered}[/tex]

Area of a triangle is given by the formula:

[tex]A_{\text{triangle}}=\frac{1}{2}\times base\times height[/tex]

Thus, we have:

[tex]\begin{gathered} A_{\text{triangle}}=\frac{1}{2}\times2\times1\frac{1}{2} \\ A_{\text{triangle}}=\frac{1}{2}\times2\times1.5=1.5m^2 \end{gathered}[/tex]

Hence, the area of the company's sign is:

[tex]\begin{gathered} A=(2\times4.5)+(2\times1.5) \\ A=9+3=12m^2 \end{gathered}[/tex]

This probability distribution shows thetypical grade distribution for a Geometrycourse with 35 students.GradeEnter a decimal rounded to the nearest hundredth.Enter

Answers

Explanation:

The total number of students is

[tex]n(S)=35[/tex]

Concept:

To figure out the probability that a student earns grade A,B or C

Will be calculated below as

[tex]P(A,BorC)=P(A)+P(B)+P(C)[/tex]

The Probability of A is

[tex]P(A)=\frac{n(A)}{n(S)}=\frac{5}{35}[/tex]

The probabaility of B is

[tex]P(B)=\frac{n(B)}{n(S)}=\frac{10}{35}[/tex]

The probabaility of C is

[tex]P(B)=\frac{n(B)}{n(S)}=\frac{15}{35}[/tex]

Hence,

By substituting the values in the concept, we will have

[tex]\begin{gathered} P(A,BorC)=P(A)+P(B)+P(C) \\ P(A,BorC)=\frac{5}{35}+\frac{10}{35}+\frac{15}{35}=\frac{30}{35} \\ P(A,BorC)=0.857 \\ P(A,BorC)\approx0.86(nearest\text{ }hundredth) \end{gathered}[/tex]

Hence,

The final answer is

[tex]0.86[/tex]

provide evidence that this function is not one to one. explain how your evidence supports that g(x) is not one to one

Answers

we have the function

g(x)=(x/3)+2 ---------> interval (-infinite, 1)

g(x)=4x-2 ------> interval [1, infinite)

the given function is not one-to -one function, because don't pass the Horizontal Line Test.

Example

For the horizontal line

y=2

we have the values of

x=0 ---------> g(x)=(x/3)+2

and

x=1 -----------> g(x)=4x-2

that means

two elements in the domain of g(x) correspond to the same element in the range of g(x)

therefore

the function is not one to one

Kaitlin's family is planning a trip from WashingtonD.C., to New York City New York City is 227 miles from Washington, D.C.and the family can drive an average of 55mi / h . About how long will the trip take?

Answers

Kaitlin's family's trip from Washington D.C., to New York City of 227 miles at average rate of 55 miles per hour is 4 hours 8 minutes

How to determine the how long the trip will take

information gotten from the question include

Washington D.C., to New York City is 227 miles

Kaitlin's family can drive an average of 55mi / h

Average speed is a function of ratio distance covered with time. this is represented mathematically as

average speed = distance covered / time

55 miles / h = 227 miles / time

time = 227 / 55

time = 4.127 hours

The trip take 4.127 hours

0.127 * 60 = 7.62 ≅ 8 minutes

Learn more about trips in miles per hour

https://brainly.com/question/14821108

#SPJ1

One group (A) contains 155 people. One-fifth of the people in group A will be selected to win $20 fuel cards. There is another group (B) in a nearby town that will receivethe same number of fuel cards, but there are 686 people in that group. What will be the ratio of nonwinners in group A to nonwinners in group B after the selections aremade? Express your ratio as a fraction or with a colon.

Answers

According to the information given in the exercise:

- Group A contains a total of 155 people.

- One-fifth of that people will be selected to win $20 fuel cards.

- The total number of people in Group B is 686.

Then, you can determine that the number of people that will be selected to win $20 fuel cards is:

[tex]winners_A=\frac{1}{5}(155)=31[/tex]

Therefore, the number of nonwinners in Group A is:

[tex]N.winners_A=155-31=124[/tex]

You know that Group B will receive the same number of fuel cards. Therefore, its number of nonwinners is:

[tex]N.winners_B=686-31=655[/tex]

Knowing all this information, you can set up the following ratio of nonwinners in Group A to nonwinners in Group B after the selections are made:

[tex]\frac{124}{655}[/tex]

Hence, the answer is:

[tex]\frac{124}{655}[/tex]

Find all values for which at least one denominator is equal to 0.

Answers

Given:

There are given the expression:

[tex]\frac{4}{x+2}-\frac{5}{x}=1[/tex]

Explanation:

To find the value of x that is equal to 0, we need to perform LCM in the denominator and then find the value for x:

Then,

From the given expression:

[tex]\begin{gathered} \frac{4}{x+2}-\frac{5}{x}=1 \\ \frac{4x-5(x+2)}{x(x+2)}=1 \end{gathered}[/tex]

Then,

According to the question, the values at least one denominator is equal to .

So,

[tex]\begin{gathered} x(x+2)=0 \\ x=0 \\ x+2=0 \\ x=-2 \end{gathered}[/tex]

Final answer:

Hence, the value of x is shown below:

[tex]x\ne0,-2[/tex]

Show your work Round to the nearest whole number if needed

Answers

Given:

Radius, r = 6

Let's find the chance of hitting the shaded area by finding the ratio.

Since the radius of the cirlce is 6, the length of one side of the square is the diameter:

s = 6 x 2 = 12

To find the ratio divide the area of the circle by area of the square. The area of the circle is the shaded area while the area of the square is the total possible area.

Thus,we have:

[tex]\text{ Area of circle = }\pi r^2=3.1416\ast6^2=3.1416\ast36=113.0976\text{ square units}[/tex][tex]\text{ Area of square = }s^2=12^2=12\ast12=144\text{ square units}[/tex][tex]\text{ Ratio=}\frac{shaded\text{ area}}{total\text{ possible area}}=\frac{area\text{ of circle}}{area\text{ of square}}=\frac{113.0976}{144}=0.7854\approx0.79[/tex][tex]\text{ Percentage ratio = 0.7854 }\ast\text{ 100=}78.54\text{ \%}[/tex]

Therefore, the chance of hitting the shaded region is 78.54%

ANSWER:

78.54%

Solve.(3.3 × 10³) (2 × 10²)

Answers

Here are the steps in multiplying scientific notations:

1. Multiply the coefficients first.

[tex]3.3\times2=6.6[/tex]

2. Multiply the base 10 by adding their exponents.

[tex]10^3\times10^2=10^{3+2}=10^5[/tex]

3. Connect the result in steps 1 and 2 by the symbol for multiplication.

[tex]6.6\times10^5[/tex]

Hence, the result is 6.6 x 10⁵.

A certain species of deer is to be introduced into a forest, and wildlife experts estimate the population will grow to P(t) = (944)3 t/3, where t represents the number ofyears from the time of introduction.What is the tripling-time for this population of deer?

Answers

Ok, so

Here we have the function:

[tex]P(t)=944(3)^{\frac{t}{3}}[/tex]

Now we want to find the tripling-time for this population of deer.

If we make t=0, we will find the initial population of deer. This is:

[tex]P(0)=944(3)^{\frac{0}{3}}=944[/tex]

Now, we want to find the time "t" such that this population is the triple.

This is:

[tex]\begin{gathered} 944(3)=944(3)^{\frac{t}{3}} \\ 2832=944(3)^{\frac{t}{3}} \\ \frac{2832}{944}=3^{\frac{t}{3}} \\ 3=3^{\frac{t}{3}} \end{gathered}[/tex]

We got this exponential equation:

[tex]3=3^{\frac{t}{3}}[/tex]

As the base is the same, we could equal the exponents:

[tex]\begin{gathered} 1=\frac{t}{3} \\ t=3 \end{gathered}[/tex]

Therefore, tripling-time for this population of deer are 3 years.

O EQUATIONS AND INEQUALITIESSolving a word problem with three unknowns using a linear...

Answers

Given:

The sum of three numbers is 81, The third number is 2 times the second, The first number us 9 moe than the second.

Required:

We need to find all the numbers

Explanation:

Assume that a, b and c are the first, second and third numbers respectively.

By given ststement

[tex]\begin{gathered} a+b+c=81\text{ .....\lparen i\rparen} \\ c=2b\text{ .....\lparen ii\rparen} \\ a=b+9\text{ .....\lparen iii\rparen} \end{gathered}[/tex]

substitute c and a in equation (i)

[tex]\begin{gathered} b+9+b+2b=81 \\ 4b=72 \\ b=18 \end{gathered}[/tex]

now put value of b in equation (ii) and (iii)

[tex]c=2*18=36[/tex]

and

[tex]a=18+9=27[/tex]

FInal answer:

first number a = 27

second number b = 18

third number c = 36

In the diagram below, if < ACD = 54 °, find the measure of < ABD

Answers

Opposite angles in a quadrilateral inscribed in a circle add up to 180, therefore:

[tex]\begin{gathered} m\angle ACD+m\angle ABD=180 \\ 54+m\angle ABD=180 \\ m\angle ABD=180-54 \\ m\angle ABD=126^{\circ} \end{gathered}[/tex]

Answer:

b. 126

Rewrite the equation to easily determine the velocity of an object. solve the Equation for v

Answers

In order to solve for v in the given equation, follow these steps:

1. Divide both sides of the equation by "m"

[tex]\begin{gathered} E=\frac{1}{2}mv^2 \\ \frac{E}{m}=\frac{1}{2}\frac{mv^2}{m} \\ \frac{E}{m}=\frac{1}{2}\frac{m}{m}v^2 \\ \frac{E}{m}=\frac{1}{2}v^2 \end{gathered}[/tex]

2. Multiply both sides by 2

[tex]\begin{gathered} \frac{E}{m}\times2=\frac{1}{2}v^2\times2 \\ 2\frac{E}{m}=\frac{2}{2}v^2 \\ 2\frac{E}{m}=v^2 \end{gathered}[/tex]

3. in order to get rid of the exponent of v, take the square root on both sides

[tex]\begin{gathered} \sqrt{2\frac{E}{m}}=\sqrt{v^2} \\ \sqrt[]{2\frac{E}{m}}=v \\ v=\sqrt[]{2\frac{E}{m}} \end{gathered}[/tex]

Then, v = √(2E/m)

A popcorn stand offers buttered or unbuttered popcorn in three sizes: small, medium, and large. What is the P(buttered)

Answers

The popcorn we can order is either buttered or unbuttered.

Therefore, the probability of choosing buttered popcorn is 1/2

The slope and one point on the line are given. Find the equation of the line (in slope-intercept form).(1/4, -4) ; m = -3 y=

Answers

Answer

y = -3x - 13/4

Step-by-step explanation

Equation of a line in slope-intercept form

[tex]y=mx+b[/tex]

where m is the slope and (0, b) is the y-intercept.

Substituting into the general equation with m = -3 and the point (1/4, -4), that is, x = 1/4 and y = -4, and solving for b:

[tex]\begin{gathered} -4=(-3)\cdot\frac{1}{4}+b \\ -4=-\frac{3}{4}+b \\ -4+\frac{3}{4}=-\frac{3}{4}+b+\frac{3}{4} \\ -\frac{13}{4}=b \end{gathered}[/tex]

Substituting into the general equation with m = -3 and b = -13/4, we get:

[tex]\begin{gathered} y=(-3)x+(-\frac{13}{4}) \\ y=-3x-\frac{13}{4} \end{gathered}[/tex]

Other Questions
Which animals are cold-blooded, breathe with lungs, most lay eggs, although in some the eggs hatch inside the female, and have scales or plates?Question 17 options:FishReptilesMammalsAmphibians symon's suppers company has announced that it will pay a dividend of $4.29 per share one year from today. additionally, the company expects to increase its dividend by 4.7 percent annually. the required return on the company's stock is 10.9 percent. what is the current share price? How do you decide which rational number operations to use to solve problems Theory that continental plates are floating a too molten magma causing them to slowly move around from a super continent into the location that they are currently in Lloyd is standing near a telephone pole. When his head touches the support wire, he is 25 feet from where the wire meets the ground. Lloydis 5 ft tall. Hon tallis the pole?1-8f feetO A 20 ft.B. 15 ftC. 80 ft.D. 17 ft how is a logograph script challenging, but also helpful? xavier wants to know how much his company owns and how much it owes. he should look at the a. asset list. b. income statement. c. balance sheet. d. statement of cash flows. A technical machinist is asked to build a cubical steel tank that will hold 415 L of water.Calculate in meters the smallest possible inside length of the tank. Round your answer to the nearest 0.001 m. I need to understand how to do problem number 5 It takes 5 seconds for a 2 kg box to be pushed 10 meters from rest. What was the forceof the push? Flag questionTransfer RNAs (tRNA) are produced through transcriptionof tRNA "genes" (DNA).It is of course essential that the tRNAs produced havecorrect ribonucleotide sequences so that (i) they arerecognised by the correct aminoacyl tRNA synthetase and(ii) they have an anticodon that matches them to thecorrect mRNA codon during translation.ESTSAssume the DNA encoding one of the tRNAs for the aminoacid tryptophan has been mutated and instead of itsanticodon sequence reading 5'-CCA-3' (correct), it nowreads 5'-TCA-3' (incorrect).What will be the effect on protein synthesis? Explainbriefly.TEEK 11CEK 11 a recipe calls for 40 ounces of rice. how many grams of rice dose the recipe require What events mark the beginning and end of the classical periods? describe what art was like during the high classical period. Which line is perpendicular to a line that has a slopeof 1?Oline MNOline ABOline EFOline JK Identify the false choice. The Argentine Radicals, who came to power in 1916 . . .a. came to power only a few years after the vote was given to all adult males.b. took their socioeconomic views from nineteenth-century liberalism.supported organized labor unequivocally.c. were toppled by a military coup after failing to cope with the crisis of the Great Depression. Help quick thanks so much Question 2 A recipe for homemade modeling clay requires 4 parts plain flour to 1 part cornstarch. Indicate whether each set of ingredients below is proportional to the recipe. Proportional Not Proportional 8 cups plain flour and 2 cups cornstarch 20 cups plain flour and 5 cups cornstarch 2 cups plain flour and 1 cup cornstarch Next Question Check Answer Privacy and Cookies | Terms of Use | Minimum Frequirements | Platform Status 2021 McGraw-HI Education. All Rights Reserved 1 litre=1000cm. About how many test tubes, each holding 24cm of water, can be filled from a1 litre flask? when an organization undertakes a complete overhaul of its critical work processes to make them more efficient and able to deliver higher quality, it is engaging in: What is the concentration in molarity of a solution which is 2.91 %m/v benzene (CH, MM =78.11 g/mol ) in CCl (MM = 153.81 g/mol)?