2. You pick up litter! Your OK bag (x) can hold at most 20 pounds and your good bag (r) can hold at most 25 pounds. The inequalities below represent this
X < 20
y ≤ 25
Which is acceptable?
1. 15 pounds in the OK bag and 8 pounds in the good bag
2. 20 pounds in the OK bag and 30 pounds in the good bag
3. 21 pounds in the OK bag and 9 pounds in the good bag

Answers

Answer 1
Answer #1 is acceptable. It doesn’t go over any limits

Related Questions

4) JD, xy?V where T is the solid tetrahedron with vertices (0,0,0), 2, 0, 0), (0, 1, 0), and (0,0,-1) 9

Answers

Given the solid tetrahedron, T with vertices (0,0,0), (2,0,0), (0,1,0), and (0,0,-1). Therefore, the coordinates of the centroid of the given tetrahedron are (1/3, 1/6, -1/3).

We need to find the coordinates of the centroid of this tetrahedron. A solid tetrahedron is a four-faced polyhedron with triangular faces that converge at a single point. The centroid of a solid tetrahedron is given by the intersection of its medians.

We can find the coordinates of the centroid of the given tetrahedron using the following steps:

Step 1: Find the midpoint of edge JD, which joins the points (0,0,0) and (2,0,0).The midpoint of JD is given by: midpoint of JD = (0+2)/2, (0+0)/2, (0+0)/2= (1, 0, 0)

Step 2: Find the midpoint of edge x y, which joins the points (0,1,0) and (0,0,-1).The midpoint of x y is given by: midpoint of x y = (0+0)/2, (1+0)/2, (0+(-1))/2= (0, 1/2, -1/2)

Step 3: Find the midpoint of edge V, which joins the points (0,0,0) and (0,0,-1).

The midpoint of V is given by: midpoint of V = (0+0)/2, (0+0)/2, (0+(-1))/2= (0, 0, -1/2)Step 4: Find the centroid, C of the tetrahedron by finding the average of the midpoints of the edges.

The coordinates of the centroid of the tetrahedron is given by: C = (midpoint of JD + midpoint of x y + midpoint of V)/3C = (1, 0, 0) + (0, 1/2, -1/2) + (0, 0, -1/2)/3C = (1/3, 1/6, -1/3)

To know more about tetrahedron

https://brainly.com/question/4681700

#SPJ11

[2+2+2+2+2] Let f(x)= 2x 1-x² (a) Find the domain, horizontal and vertical asymptotes of function f(x). (b) Find the critical points if any, if the derivative of the function is given as: 2+2x² f'(x)= (1-x²)² (c) Find the intervals where f(x) is increasing and decreasing, the extrema of f(x) if any. (d) Find the intervals where f(x) is concave up and concave down, the point of inflection if any. If the second derivative of the function is given as: f(x)= 12x+4x² (1-x²) (e) Sketch the graph of f(x).
Exp

Answers

a. The domain of f(x) is all real numbers except x = -1 and x = 1. The horizontal asymptote is y = 0. There are no vertical asymptotes for this function.

b. The critical points are x = -1 and x = 1.

c. There are no local extrema.

d. f(x) is concave up on the intervals (-1, 0) and (1, ∞), and concave down on the intervals (-∞, -1) and (0, 1). The point of inflection occurs at x = 0.

e. The graph of the function is attached below.

What is asymptote?

A straight line that continuously approaches a certain curve without ever meeting it is an asymptote. In other words, an asymptote is a line that a curve travels towards as it approaches infinity.

(a) Domain, horizontal, and vertical asymptotes:

The domain of a function is the set of all possible values of x for which the function is defined. In this case, the function f(x) is defined for all real numbers except where the denominator becomes zero. So the domain of f(x) is all real numbers except x = -1 and x = 1.

To find the horizontal asymptotes, we examine the behavior of the function as x approaches positive and negative infinity. As x becomes large in magnitude, the terms 2x and 1-x² dominate the expression. The degree of the numerator is 1 and the degree of the denominator is 2. Therefore, the horizontal asymptote is y = 0.

There are no vertical asymptotes for this function.

(b) Critical points:

To find the critical points, we need to find the values of x where the derivative of the function f(x) is equal to zero or undefined.

f'(x) = (1-x²)²

Setting f'(x) equal to zero:

(1-x²)² = 0

Taking the square root of both sides:

1 - x² = 0

x² = 1

x = ±1

So the critical points are x = -1 and x = 1.

(c) Increasing and decreasing intervals, extrema:

To determine the intervals where f(x) is increasing or decreasing, we need to examine the sign of the derivative f'(x).

For x < -1, f'(x) is positive.

For -1 < x < 1, f'(x) is negative.

For x > 1, f'(x) is positive.

From this, we can conclude that f(x) is increasing on the intervals (-∞, -1) and (1, ∞), and decreasing on the interval (-1, 1).

Since the function changes from increasing to decreasing at x = -1 and from decreasing to increasing at x = 1, there are no local extrema.

(d) Concave up, concave down, and point of inflection:

To determine the intervals of concavity and locate the point of inflection, we need to examine the sign of the second derivative f''(x).

f''(x) = 12x + 4x²(1-x²)

Setting f''(x) equal to zero:

12x + 4x²(1-x²) = 0

Simplifying and factoring:

4x(3 + x(1 - x²)) = 0

This equation is true when x = 0 and x = ±1.

For x < -1, f''(x) is negative.

For -1 < x < 0, f''(x) is positive.

For 0 < x < 1, f''(x) is negative.

For x > 1, f''(x) is positive.

Therefore, f(x) is concave up on the intervals (-1, 0) and (1, ∞), and concave down on the intervals (-∞, -1) and (0, 1).

The point of inflection occurs at x = 0.

(e) Sketching the graph:

Based on the information gathered, we can sketch the graph of f(x) by considering the domain, asymptotes, critical points, increasing/decreasing intervals, concavity, and the point of inflection. However, without specific instructions on the scale or additional details, it's not possible to provide an accurate sketch here. I recommend using a graphing tool or software to plot the graph of f(x) using the given equation and the information discussed above.

Learn more about asymptote on:

https://brainly.com/question/30197395

#SPJ4

Let S be the surface of z = 3 – 4x² - y2 with z > -1 z Find the flux of F = [20y, y, 4z] on S

Answers

The flux of the vector field F = [20y, y, 4z] on the surface S, defined by z = 3 – 4x² - y² with z > -1, can be calculated by evaluating a surface integral using the normal vector dS.

To find the flux of the vector field F = [20y, y, 4z] on the surface S defined by the equation z = 3 – 4x² - y², where z > -1, we need to evaluate the surface integral. The flux is given by the formula:

Flux = ∬S F · dS

The normal vector dS of the surface S can be obtained by taking the gradient of the equation z = 3 – 4x² - y². The gradient is given by [∂z/∂x, ∂z/∂y, -1].

Differentiating z with respect to x and y, we have ∂z/∂x = -8x and ∂z/∂y = -2y.

Therefore, the flux can be calculated by evaluating the integral over the surface S:

Flux = ∬S [20y, y, 4z] · [-8x, -2y, -1] dS

The computation of this surface integral involves integrating the dot product of the vector field F with the normal vector dS over the surface S, taking into account the bounds and parametrization of the surface.


Learn more about Flux of vector click here :brainly.com/question/29740341

#SPJ11

how many different makes and models of commercial aircraft are currently in service by the world's airlines

Answers

There are approximately 19 major commercial aircraft manufacturers, with hundreds of different makes and models currently in service by airlines worldwide.

To determine the number of different commercial aircraft makes and models in service, one can research major aircraft manufacturers, such as Boeing, Airbus, Bombardier, Embraer, and others. Each manufacturer produces multiple models, with various sub-models designed for specific airline needs. By researching each manufacturer's aircraft line and cross-referencing with the fleets of airlines around the world, a comprehensive list of commercial aircraft in service can be compiled. However, this number is constantly changing due to new models being introduced and older ones being retired.

The world's airlines currently operate hundreds of different makes and models of commercial aircraft, with a variety of manufacturers contributing to the diverse fleet in service today.

To know more about commercial aircraft manufacturers visit:

https://brainly.com/question/28873287

#SPJ11

00 an+1 When we use the Ration Test on the series (-7)1+8n (n+1) n2 51+n we find that the limit lim and hence the series is 00 an n=2 divergent convergent

Answers

When applying the Ratio Test to the series (-7)^(n+1)/(n^2 + 51n), we determine that the limit of the ratio as n approaches infinity is equal to infinity. Therefore, the series is divergent.

To apply the Ratio Test, we calculate the limit of the absolute value of the ratio of consecutive terms as n approaches infinity. For the given series (-7)^(n+1)/(n^2 + 51n), let's denote the general term as an.

Using the Ratio Test, we evaluate the limit as n approaches infinity:

lim(n → ∞) |(an+1/an)| = lim(n → ∞) |(-7)^(n+2)/[(n+1)^2 + 51(n+1)] * (n^2 + 51n)/(-7)^(n+1)|.

Simplifying the expression, we get:

lim(n → ∞) |-7/(n+1+51) * (n^2 + 51n)/-7| = lim(n → ∞) |-(n^2 + 51n)/(n+1+51)|.

As n approaches infinity, both the numerator and denominator grow without bound, resulting in an infinite limit:

lim(n → ∞) |-(n^2 + 51n)/(n+1+51)| = ∞.

Since the limit of the ratio is infinity, the Ratio Test tells us that the series is divergent.

To learn more about divergent click here, brainly.com/question/31778047

#SPJ11

for the infinite server queue with poisson arrivals and general service distribution g, find the probability that
(a) the first customer to arrive is also the first to depart.
Let S(t) equal the sum of the remaining service times of all customers in the system at time t.
(b) Argue that S(t) is a compound Poisson random variable. (c) Find E[S(t)]. (d) Find Var(S(t)).

Answers

(a) In the infinite server queue with Poisson arrivals and general service distribution, the probability that the first customer to arrive is also the first to depart can be calculated.

(b) We can argue that the sum of the remaining service times of all customers in the system at time t, denoted as S(t), is a compound Poisson random variable.

(a) In an infinite server queue with Poisson arrivals and general service distribution, the probability that the first customer to arrive is also the first to depart can be obtained by considering the arrival and service processes. Since the arrivals are Poisson distributed and the service distribution is general, the first customer to arrive will also be the first to depart with a certain probability. The specific calculation would depend on the details of the arrival and service processes.

(b) To argue that S(t) is a compound Poisson random variable, we need to consider the properties of the system. In an infinite server queue, the service times for each customer are independent and identically distributed (i.i.d.). The arrival process follows a Poisson distribution, and the number of customers present at any given time follows a Poisson distribution as well. Therefore, the sum of the remaining service times of all customers in the system at time t, S(t), can be seen as a sum of i.i.d. random variables, where the number of terms in the sum is Poisson-distributed. This aligns with the definition of a compound Poisson random variable.

(c) To find E[S(t)], the expected value of S(t), we would need to consider the distribution of the remaining service times and their probabilities. Depending on the specific service distribution and arrival process, we can use appropriate techniques such as moment generating functions or conditional expectations to calculate the expected value.

(d) Similarly, to find Var(S(t)), the variance of S(t), we would need to analyze the distribution of the remaining service times and their probabilities. The calculation of the variance would depend on the specific characteristics of the service distribution and arrival process, and may involve moment generating functions, conditional variances, or other appropriate methods.

Learn more about probability here: https://brainly.com/question/32117953

#SPJ11

Question 7. Suppose F(x, y, z) = (xz, ty, zy) and C is the boundary of the portion of the paraboloid z=4-2-y? that lies in the first octant, oriented counterclockwise as viewed from above. Use Stoke's Theorer to find lo F. dr

Answers

The evaluation of the line integral ∮C F · dr over the given curve C is -(8/3).

Since 0 ≤ x ≤ ∞ and 0 ≤ y ≤ 2, the integral becomes:

∮C F · dr = ∫₀² ∫₀ˣ -x dy dx

To apply Stokes' theorem, we need to compute the curl of the vector field F and then evaluate the surface integral over the boundary curve C.

Given the vector field F(x, y, z) = (xz, ty, zy), we can calculate its curl as follows:

∇ × F = (∂/∂x, ∂/∂y, ∂/∂z) × (xz, ty, zy)

Let's compute each component of the curl:

∂/∂x(xz, ty, zy) = (0, 0, z)

∂/∂y(xz, ty, zy) = (0, t, 0)

∂/∂z(xz, ty, zy) = (x, y, x)

Therefore, the curl of F is:

∇ × F = (0, t, 0) - (x, y, x) = (-x, t - y, -x)

Now, let's find the boundary curve C, which is the intersection of the paraboloid z = 4 - 2 - y and the first octant.

First, let's solve the equation for z:

z = 4 - 2 - y

z = 2 - y

To find the boundaries in the first octant, we set x, y, and z to be non-negative:

x ≥ 0

y ≥ 0

z ≥ 0

Since z = 2 - y, we have:

2 - y ≥ 0

y ≤ 2

Therefore, the boundary curve C lies in the xy-plane and is defined by the following conditions:

0 ≤ x ≤ ∞

0 ≤ y ≤ 2

z = 2 - y

Now, we can evaluate the surface integral of the curl of F over the boundary curve C using Stokes' theorem:

∮C F · dr = ∬S (∇ × F) · dS

where S is the surface bounded by C.

Since C lies in the xy-plane, the normal vector dS is simply the positive z-axis direction, i.e., dS = (0, 0, 1) dA, where dA is the infinitesimal area element in the xy-plane.

Therefore, the surface integral simplifies to:

∮C F · dr = ∬S (∇ × F) · (0, 0, 1) dA

         = ∬S (0, t - y, -x) · (0, 0, 1) dA

         = ∬S -x dA

To evaluate this integral, we need to determine the limits of integration for x and y.

Since 0 ≤ x ≤ ∞ and 0 ≤ y ≤ 2, the integral becomes:

∮C F · dr = ∫₀² ∫₀ˣ -x dy dx

∫₀² ∫₀ˣ -x dy dx

First, we integrate with respect to y, treating x as a constant:

∫₀ˣ -xy ∣₀ˣ dx

Simplifying this expression, we get:

∫₀² -x² dx

Next, we integrate with respect to x:

= -(1/3)x³ ∣₀²

= -(1/3)(2)³ - (1/3)(0)³

= -(8/3)

Therefore, the evaluation of the line integral ∮C F · dr over the given curve C is -(8/3).

Learn more about vector:https://brainly.com/question/3184914

#SPJ11

It snowed from 7:56 am to 11:39 am. How long was it snowing?

Answers

Answer:

It was snowing for 4 hours and 23 minutes

Step-by-step explanation:

11:39

- 7:56

-----------

 383

83

- 60

--------

 23

4 hours and 23 minutes.


show steps!
use MacLaurin series to approximate integral (top is 0.8 and
bottom is 0) x^4 * ln (1+x^2) dx, so that the absolute value of the
error in this approximation is less than 0.001.

Answers

The absolute value of the error is less than 0.001.

The integral using the Maclaurin series, we need to expand the integrand function, which is x⁴×ln(1+x²), into a power series.

Then we can integrate each term of the power series.

The Maclaurin series expansion of ln(1+x²) is:

ln(1+x²) = x² - (1/2)x⁴ + (1/3)x⁶ - (1/4)x⁸ + ...

Next, we multiply each term of the power series by x⁴:

x⁴×ln(1+x²) = x⁶ - (1/2)x⁸ + (1/3)x¹⁰- (1/4)x¹² + ...

Now, we can integrate each term of the power series:

∫ (x⁶ - (1/2)x⁸ + (1/3)x¹⁰ - (1/4)x¹² + ...) dx

To ensure the absolute value of the error is less than 0.001, we need to determine how many terms to include in the approximation.

We can use the alternating series estimation theorem to estimate the error. By calculating the next term, (-1/4)x¹², and evaluating it at x = 0.8, we find that the error term is smaller than 0.001.

Therefore, we can include the first four terms in the approximation.

Finally, we substitute x = 0.8 into each term and sum them up:

Approximation = (0.8⁶)/6 - (1/2)(0.8⁸)/8 + (1/3)(0.8¹⁰)/10 - (1/4)(0.8¹²)/12

< 0.001

To learn more on Integration click:

https://brainly.com/question/31744185

#SPJ1

The percent of concentration of a certain drug in the bloodstream x hours after the drug is administered is given by K(x) = 3x/x^2+36. At what time is the concentration a maximum?

Answers

The concentration is maximum at x = 6 hours after the drug is administered.

To find the time at which the concentration is a maximum, we need to determine the critical points of the concentration function and then determine which critical point corresponds to the maximum value.

Let's first find the derivative of the concentration function with respect to time:

k(x) = (3x) / (x² + 36)

To find the maximum, we need to find when the derivative is equal to zero:

k'(x) = [ (3)(x² + 36) - (3x)(2x) ] / (x² + 36)²

= [ 3x² + 108 - 6x² ] / (x² + 36)²

= (108 - 3x²) / (x² + 36)²

Setting k'(x) equal to zero:

(108 - 3x²) / (x² + 36)² = 0

To simplify further, we can multiply both sides by (x² + 36)²:

108 - 3x² = 0

Rearranging the equation:

3x² = 108

Dividing both sides by 3:

x² = 36

Taking the square root of both sides:

x = ±6

Therefore, we have two critical points: x = 6 and x = -6.

Since we're dealing with time, the concentration cannot be negative. Thus, we can disregard the negative value.

Therefore, the concentration is maximum at x = 6 hours after the drug is administered.

Learn more about maxima click;

https://brainly.com/question/31980548

#SPJ1

A company handles an apartment building with 70 units. Experience has shown that if the rent for each of the units is $1080 per month, all the units will be filled, but 1 unit will become vacant for each $20 increase in the monthly rate. What rent should be charged to maximize the total revenue from the building if the upper limit on the rent is $1300 per month? - 2. If the total revenue function for a computer is R(x) 2000x – 20x’ – x', find the level of sales, x, that " maximizes revenue and find the maximum revenue in dollars. A firm has total revenues given by R(x) = 2800x – 8x² – x3 dollars

Answers

To determine the rent that maximizes the total revenue from the building, we can express the relationship between the rent and the number of occupied units. By setting up equations based on the given information. Answer :  Revenue = R * (70 - R/20 + 54).

we can derive a revenue function. Taking the derivative of this function and finding its critical points will help us identify the rent that maximizes the revenue.

1. Let R be the rent per unit and V be the number of vacant units. Using the information provided, we can express V = (R - 1080) / 20.

2. The number of occupied units, O, can be obtained as O = 70 - V.

3. The total revenue is given by Revenue = R * O.

4. Substituting the expressions for V and O into the revenue equation, we obtain Revenue = R * (70 - R/20 + 54).

5. Taking the derivative of the revenue function with respect to R, setting it equal to zero, and solving for R will give us the rent that maximizes the revenue.

2) The total revenue function for a computer is R(x) = 2800x - 8x^2 - x^3, where x represents the level of sales. To find the level of sales, x, that maximizes the revenue, we need to find the critical points of the revenue function by taking its derivative and setting it equal to zero. Solving this equation will give us the values of x that maximize the revenue. Substituting these values back into the revenue function will help us find the maximum revenue.

1. Calculate the derivative of the revenue function R(x) = 2800x - 8x^2 - x^3, which is R'(x) = 2800 - 16x - 3x^2.

2. Set R'(x) equal to zero: 2800 - 16x - 3x^2 = 0.

3. Solve the quadratic equation 3x^2 + 16x - 2800 = 0 either by factoring or using the quadratic formula.

4. Find the values of x that satisfy the equation and represent the critical points.

5. Evaluate the revenue function R(x) at these critical points to find the maximum revenue.

6. The level of sales, x, that maximizes the revenue is determined by the critical points, and the maximum revenue is obtained by substituting this value back into the revenue function.

Learn more about  revenue  : brainly.com/question/27325673

#SPJ11

a bank officer wants to determine the amount of the average total monthly deposits per customer at the bank. he believes an estimate of this average amount using a confidence interval is sufficient. he assumes the standard deviation of total monthly deposits for all customers is about $9.11. how large a sample should he take to be within $3 of the actual average with 95% confidence?

Answers

The bank officer should take a sample size of at least 106 customers to estimate the average total monthly deposits per customer with a 95% confidence interval and within a margin of error of $3. This ensures a reliable estimate within the desired range.

To determine the sample size needed to estimate the average total monthly deposits per customer with a specified margin of error and confidence level, we can use the formula:

n = (Z * σ / E)²

Where:

n = sample size

Z = Z-score corresponding to the desired confidence level (in this case, 95% confidence corresponds to a Z-score of approximately 1.96)

σ = standard deviation of the population

E = desired margin of error

In this case, the desired margin of error is $3, and the assumed standard deviation is $9.11. Plugging these values into the formula, we get:

n = (1.96 * 9.11 / 3)²≈ 105.7

Since the sample size must be a whole number, we round up to the nearest integer. Therefore, the bank officer should take a sample size of at least 106 customers to estimate the average total monthly deposits per customer with a 95% confidence interval and within a margin of error of $3. This sample size ensures that the estimate is likely to be within the desired range.

Learn more about average here: https://brainly.com/question/24057012

#SPJ11

(5 points) Find the vector equation for the line of intersection of the planes x - y + 4z = 1 and x + 3z = 5 r = ,0) + (-3, ).

Answers

The vector equation for the line of intersection of the planes x - y + 4z = 1 and x + 3z = 5 is r = (5, 4, 0) + t(12, -1, 1).

To find the vector equation for the line of intersection of the planes x − y + 4z = 1 and x + 3z = 5, follow these steps:

Step 1: Find the direction vector of the line of intersection by taking the cross product of the normal vectors of the two planes. The normal vectors are given by (1, -1, 4) and (1, 0, 3) respectively.

(1,-1,4) xx (1,0,3) = i(12) - j(1) + k(1) = (12,-1,1)

Therefore, the direction vector of the line of intersection is d = (12, -1, 1).

Step 2: Find a point on the line of intersection. Let z = t. Substituting this into the equation of the second plane, we have:

x + 3z = 5x + 3t = 5x = 5 - 3t

Substituting this into the equation of the first plane, we have: x - y + 4z = 1, 5 - 3t - y + 4t = 1, y = 4t + 4

Therefore, a point on the line of intersection is (5 - 3t, 4t + 4, t). Let t = 0.

This gives us the point (5, 4, 0).

Step 3: Write the vector equation of the line of intersection.

Using the point (5, 4, 0) and the direction vector d = (12, -1, 1), the vector equation of the line of intersection is:

r = (5, 4, 0) + t(12, -1, 1)

To learn more about vector click here https://brainly.com/question/24256726

#SPJ11

An arch is in the shape of a parabola. It has a span of 140 feet and a maximum height of 7
feet. Find the equation of the parabola (assuming the origin is halfway between the arch's
feet).

Answers

The equation of the parabola representing the arch is y = -0.01x^2 + 7, where x represents the horizontal distance from the origin.

We are given that the arch has a span of 140 feet, which means the horizontal distance from one foot of the arch to the other is 140/2 = 70 feet. The maximum height of the arch is 7 feet.

Since the origin is halfway between the arch's feet, the vertex of the parabola representing the arch is at (0, 7).

The standard equation of a parabola in vertex form is y = a(x-h)^2 + k, where (h, k) represents the coordinates of the vertex.

In this case, the vertex is (0, 7), so the equation of the parabola becomes y = a(x-0)^2 + 7.

To find the value of 'a', we can use the fact that the parabola passes through one of its feet, which is at (-70, 0). Substituting these values into the equation:

0 = a(-70-0)^2 + 7

Simplifying:

0 = 4900a + 7

Solving for 'a':

4900a = -7

a = -7/4900 = -0.00142857143

Therefore, the equation of the parabola representing the arch is y = -0.00142857143x^2 + 7.

Learn more about parabola here:

https://brainly.com/question/29267743

#SPJ11

Use the Limit Comparison Test to determine convergence or divergence Σ 312-n-1 #2 M8 nan +8n2-4 Select the expression below that could be used for be in the Limit Comparison Test and fill in the valu

Answers

The expression that can be used for the Limit Comparison Test is [tex]8n^2 - 4.[/tex]

By comparing the given series[tex]Σ(3^(12-n-1))/(2^(8n) + 8n^2 - 4)[/tex]with the expression [tex]8n^2 - 4,[/tex] we can establish convergence or divergence. First, we need to show that the expression is positive for all n. Since n is a positive integer, the term [tex]8n^2 - 4[/tex] will always be positive. Next, we take the limit of the ratio of the two series terms as n approaches infinity. By dividing the numerator and denominator of the expression by [tex]3^n[/tex] and [tex]2^8n[/tex] respectively, we can simplify the limit to a constant. If the limit is finite and nonzero, then both series converge or diverge together. If the limit is zero or infinity, the behavior of the series can be determined accordingly.

Learn more about  convergence here

https://brainly.com/question/28209832

#SPJ11

please show work clearly and label answer
Pr. #7) Find the absolute extreme values on the given interval. sin 21 f(x) = 2 + cos2.c

Answers

The absolute extreme values on the interval are:

Absolute maximum: f(x) = 3 at x = 0 and x = π

Absolute minimum: f(x) = 2 at x = π/2

To find the absolute extreme values of the function f(x) = 2 + cos^2(x) on the given interval, we need to evaluate the function at its critical points and endpoints.

Step 1: Find the critical points by taking the derivative of f(x) and setting it equal to zero.

f'(x) = -2sin(x)cos(x)

Setting f'(x) = 0, we have:

-2sin(x)cos(x) = 0

This equation is satisfied when sin(x) = 0 or cos(x) = 0.

The critical points occur when x = 0, π/2, and π.

Step 2: Evaluate the function at the critical points and the endpoints of the interval.

At x = 0:

f(0) = 2 + cos^2(0) = 2 + 1 = 3

At x = π/2:

f(π/2) = 2 + cos^2(π/2) = 2 + 0 = 2

At x = π:

f(π) = 2 + cos^2(π) = 2 + 1 = 3

Step 3: Compare the values of f(x) at the critical points and endpoints to determine the absolute extreme values.

The function f(x) = 2 + cos^2(x) has a maximum value of 3 at x = 0 and x = π, and a minimum value of 2 at x = π/2.

To know more about extreme values refer here:

https://brainly.com/question/1286349#

#SPJ11

In the diagram below of right triangle ABC, altitude CD is drawn to hypotenuse AB. If AD = 3 and DB = 12, what is the length of altitude CD?

Answers

The length of the altitude DB of the triangle is 6 units.

How to find the altitude of the right triangle?

A right angle triangle is a triangle that has one of its angles as 90 degrees.

The sum of angles in a triangle is 180 degrees. The triangles are similar. Therefore, the similar ratio can be used to find the altitude DB of the triangle.

Therefore, using the ratio,

let

x = altitude

Hence,

3 / x = x / 12

cross multiply

x²= 12  × 3

x = √36

x = 6 units

Therefore,

altitude of the triangle  = 6 units

learn more on triangle here: https://brainly.com/question/21552421

#SPJ1

At a price of x dollars, the supply function for a music player is q = 60e0.0054, where q is in thousands of units. How many music players will be supplied at a price of 150? (Round to the nearest thousand.) thousand units Find the marginal supply Marginal supply(x) Which is the best interpretation of the derivative? The rate of change of the quantity supplied as the price increases The rate of change of the price as the quantity supplied increases The quantity supplied if the price increases The price at a given supply of units The number of units that will be demanded at a given price

Answers

To find the number of music players supplied at a price of 150, we substitute x = 150 into the supply function q = 60e^(0.0054x) and round the result to the nearest thousand. The marginal supply is found by taking the derivative of the supply function with respect to x. The best interpretation of the derivative is the rate of change of the quantity supplied as the price increases.

1. To find the number of music players supplied at a price of 150, we substitute x = 150 into the supply function q = 60e^(0.0054x):

  q(150) = 60e^(0.0054 * 150) ≈ 60e^0.81 ≈ 60 * 2.246 ≈ 134.76 ≈ 135 (rounded to the nearest thousand).

2. The marginal supply is found by taking the derivative of the supply function with respect to x:

  Marginal supply(x) = d/dx(60e^(0.0054x)) = 0.0054 * 60e^(0.0054x) = 0.324e^(0.0054x).

3. The best interpretation of the derivative (marginal supply) is the rate of change of the quantity supplied as the price increases. In other words, it represents how many additional units of the music player will be supplied for each unit increase in price.

Therefore, at a price of 150 dollars, approximately 135 thousand units of music players will be supplied. The marginal supply function is given by 0.324e^(0.0054x), and its interpretation is the rate of change of the quantity supplied as the price increases.

Learn more about derivative :

https://brainly.com/question/29020856

#SPJ11

Q5: Solve the below
Let F(x) = ={ *: 2 – 4)3 – 3 x < 4 et +4 4

Answers

The function F(x) can be defined as follows: F(x) = 2x - 4 if x < 4 and F(x) = 4 if x >= 4.

The function F(x) is defined piecewise, meaning it has different definitions for different intervals of x. In this case, we have two cases to consider:

When x < 4: In this interval, the function F(x) is defined as 2x - 4. This means that for any value of x that is less than 4, the function F(x) will be equal to 2 times x minus 4.

When x >= 4: In this interval, the function F(x) is defined as 4. This means that for any value of x that is greater than or equal to 4, the function F(x) will be equal to 4.

By defining the function F(x) in this piecewise manner, we can handle different behaviors of the function for different ranges of x. For x values less than 4, the function follows a linear relationship with the equation 2x - 4. For x values greater than or equal to 4, the function is a constant value of 4.

Learn more about equation here:

https://brainly.com/question/29174899

#SPJ11

PLEASE HELP I WILL GIVE 100 POINTS AND BRAINLIEST AND I'LL TRY TO ANSWER SOME OF YOUR QUESTIONS!!!!!
Three shipping companies want to compare the mean numbers of deliveries their drivers complete in a day.
The first two shipping companies provided their data from a sample of drivers in a table.
Company C showed its data in a dot plot.
Answer the questions to compare the mean number of deliveries for the three companies.
1. How many drivers did company C use in its sample?
2. What is the MAD for company C's data? Show your work.
3. Which company had the greatest mean number of deliveries?
4. Compare the means for companies A and B. By how many times the MAD do their means differ? Show your work.

Answers

Answer:

1. the company C used 10 drivers2.      6 + 7 + 8 + 9 + 10 + 10 + 10 + 12 + 14 + 14 = 100/10. The Mean = 10  (6- 10) + (7- 10) + (8- 10) + (9- 10) + (10- 10) + (10- 10) + (10- 10) + (12- 10) + (14- 10)4 + 3 + 2 + 1 + 0 + 0 + 0 + 2 + 4  = 16/10 = 1 6/103. The groups that had the most deliveries where group A and B4. So if there are 6 deliveries of group A and 14 deliveries from group B i think the MAD would be 4

Step-by-step explanation:

Relative to an origin O, the position vectors of the points A, B and C are given by
01 =i- j+2k, OB=-i+ j+ k and OC = j+ 2k respectively. Let Il is the plane
containing OA and OB.
(1)
Show that OA and OB are orthogonal.
(In)
Determine if O1 and OB are independent. Justify your answer.
(ili)
Find a non-zero unit vector n which is perpendicular to the plane I.
(IV)
Find the orthogonal projection of OC onto n.
(v)
Find the orthogonal projection of OC on the plane I.

Answers

The projection of OC onto the plane by subtracting the projection of OC onto n from OC: [tex]proj_I OC = OC - proj_n OC= (-1/19)i + (33/19)j - (6/19)k[/tex]

(1) To show that OA and OB are orthogonal, we take their dot product and check if it is equal to zero:

OA . OB = (i - j + 2k) . (-i + j + k)= -i.i + i.j + i.k - j.i + j.j + j.k + 2k.i + 2k.j + 2k.k= -1 + 0 + 0 - 0 + 1 + 0 + 0 + 0 + 2= 2

Therefore, OA and OB are not orthogonal.

(ii) To determine if OA and OB are independent, we form the matrix of their position vectors: 1 -1 2 -1 1 1The determinant of this matrix is non-zero, hence the vectors are independent.

(iii) A non-zero unit vector n perpendicular to the plane I can be obtained as the cross product of OA and OB:

n = OA x OB= (i - j + 2k) x (-i + j + k)= (3i + 3j + 2k)/sqrt(19) (using the cross product formula and simplifying)(iv) The orthogonal projection of OC onto n is given by the dot product of OC and the unit vector n, divided by the length of n:

proj_n OC = (OC . n / ||n||^2) n= [(0 + 2)/sqrt(5)] (3i + 3j + 2k)/19= (6/19)i + (6/19)j + (4/19)k(v)

The orthogonal projection of OC onto the plane I is given by the projection of OC onto the normal vector n of the plane. Since OA is also in the plane I, it is parallel to the normal vector and its projection onto the plane is itself. Therefore, we can find the projection of OC onto the plane by subtracting the projection of OC onto n from OC:

[tex]proj_I OC = OC - proj_n OC= (-1/19)i + (33/19)j - (6/19)k[/tex]

Learn more about vector :

https://brainly.com/question/24256726

#SPJ11

During a certain 24 - hour period , the temperature at time (
measured in hours from the start of the period ) was T(t) = 49 + 8t
- 1/2 * t ^ 2 degrees . What was the average temperature during
that p
During a certain 24-hour period, the temperature at time t (measured in hours from the start of the period) was T(t) = 49+8t- degrees. What was the average temperature during that period? The average

Answers

To find the average temperature during the 24-hour period, we need to calculate the total temperature over that period and divide it by the duration.

The total temperature is the definite integral of the temperature function T(t) over the interval [0, 24]:

Total temperature = ∫[0, 24] (49 + 8t - 1/2 * t^2) dt

We can evaluate this integral to find the total temperature:

Total temperature = [49t + 4t^2 - 1/6 * t^3] evaluated from t = 0 to t = 24

Total temperature = (49 * 24 + 4 * 24^2 - 1/6 * 24^3) - (49 * 0 + 4 * 0^2 - 1/6 * 0^3)

Total temperature = (1176 + 2304 - 0) - (0 + 0 - 0)

Total temperature = 3480 degrees

The duration of the period is 24 hours, so the average temperature is:

Average temperature = Total temperature / Duration

Average temperature = 3480 / 24

Learn more about temperature  here;

https://brainly.com/question/7510619

#SPJ11

Use the midpoint rule with the given value of n to approximate the integral. (Round your answer to four decimal places.) 32 sin (√x) dx, n = 4

Answers

The midpoint rule is a numerical approximation method for evaluating definite integrals. It divides the interval of integration into n equal subintervals and approximates the integral by evaluating the function at the midpoint of each subinterval.

In this case, we are given the integral ∫32 sin(√x) dx, and we need to use the midpoint rule with n = 4 to approximate it.

First, we divide the interval [3, 2] into 4 equal subintervals. The width of each subinterval is Δx = (b - a)/n = (2 - 3)/4 = 0.25.

Next, we find the midpoint of each subinterval. The midpoints are x₁ = 3.125, x₂ = 3.375, x₃ = 3.625, and x₄ = 3.875.

Then, we evaluate the function at each midpoint. Let's denote the function as f(x) = sin(√x). We calculate f(x₁), f(x₂), f(x₃), and f(x₄).

Finally, we compute the approximate integral using the midpoint rule formula: Approximate integral ≈ Δx * [f(x₁) + f(x₂) + f(x₃) + f(x₄)]

By plugging in the calculated values, we can find the numerical approximation for the integral. Remember to round the answer to four decimal places.

Learn more about integrals here: brainly.com/question/32515679

#SPJ11

Determine whether the series is convergent or divergent. Sigma_n=1^infinity 1/9 + e^-n convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Answers

The given series is convergent. To determine whether the series is convergent or divergent, we need to examine the behavior of its terms as n approaches infinity. The given series is a sum of two terms: 1/9 and e^(-n).

The term 1/9 is a constant term that does not depend on n. The series ∑(1/9) is a geometric series with a common ratio of 1, which is less than 1. Therefore, this series converges, and its sum can be found using the formula for the sum of a geometric series:

Sum = a / (1 - r),

where a is the first term and r is the common ratio. In this case, a = 1/9 and r = 1, so the sum of the series ∑(1/9) is given by:

Sum = (1/9) / (1 - 1) = (1/9) / 0.

However, dividing by zero is undefined, so the sum of the series ∑(1/9) is not defined.

The second term in the series is e^(-n), where e is Euler's number. As n approaches infinity, e^(-n) approaches 0. This term contributes to the convergence of the series. Therefore, the series ∑(1/9 + e^(-n)) is convergent. However, since the first term does not have a defined sum, we cannot determine the sum of the series.

Learn more about ratio here: https://brainly.com/question/25184743

#SPJ11

how do i figure this out?

Answers

Answer:

fill in the point into your equation and check it.

Step-by-step explanation:

You did a great job writing the equation. Now use the equation and the (x, y) in each part to find out which points are on the circle. For example, part A, (3,9) use x =3 and y = 9 in your equation

(3+3)^2 + (9-1)^2 = 100?



6^2 + 8^2 = 100

36 + 64 = 100

100 = 100 this checks so A(3,9) IS on the circle.

But for B(6,8), that is not on the circle bc it does not check:

(6+3)^2 + (8-1)^2 =100?



9^2 + 7^2 = 100

81 + 49 = 100

130 = 100 false. This does not check. (6,8) is not on the circle.

Be sure to check C, D, E

"
Find the derivative of: - 3e4u ( -724) - Use ex for e

Answers

The derivative of -3e⁴u with respect to x is -3e⁴u * du/dx.

To find the derivative of the given function, we can apply the chain rule. The derivative of a function of the form f(g(x)) is given by the product of the derivative of the outer function f'(g(x)) and the derivative of the inner function g'(x).

In this case, we have: f(u) = -3e⁴u

Applying the chain rule, we have: f'(u) = -3 * d/dx(e⁴u)

Now, the derivative of e⁴u with respect to u can be found using the chain rule again: d/dx(e⁴u) = d/du(e⁴u) * du/dx

The derivative of e⁴u with respect to u is simply e⁴u, and du/dx is the derivative of u with respect to x.

Putting it all together, we have: f'(u) = -3 * e⁴u * du/dx

So, the derivative of -3e⁴u with respect to x is -3e⁴u * du/dx.

Know more about chain rule here

https://brainly.com/question/30764359#

#SPJ11

2 1/2 liter of oil are poured into a container whose cross-section is a square of 12 1/2cm . how deep is the oil container​

Answers

Answer:

16 cm

Step-by-step explanation:

To determine the depth of the oil container, we need to find the height of the oil column when 2 1/2 liters of oil are poured into it.

Given that the container's cross-section is a square with a side length of 12 1/2 cm, we can calculate the area of the cross-section.

Area of the cross-section = side length * side length

= 12.5 cm * 12.5 cm

= 156.25 cm²

Now, let's convert 2 1/2 liters to milliliters since the density of the oil is typically measured in milliliters.

1 liter = 1000 milliliters

2 1/2 liters = 2.5 liters = 2.5 * 1000 milliliters = 2500 milliliters

To find the height of the oil column, we divide the volume of the oil (2500 milliliters) by the area of the cross-section (156.25 cm²).

Height of the oil column = Volume / Area

= 2500 milliliters / 156.25 cm²

≈ 16 cm

Therefore, the depth of the oil container is approximately 16 cm.

(I) Suppose That C Is A Piecewise Smooth, Simple Closed Curve That Is Counterclockwise. Show That The Area A(R) Of The Region R Enclosed By C Is Given By . . A(R) = $ X Dy. = (Ii) Now Consider The Simple Closed Curve C In The Xy-Plane Given By The Polar Equation R = Sin 8. State A Parametrization Of C. (Iii) Use The Formula In Part (I) To Find The Area Of
(i) Suppose that C is a piecewise smooth, simple closed curve that is
counterclockwise. Show that the area A(R) of the region

Answers

In this problem, we are given a piecewise smooth, counterclockwise simple closed curve C and we need to show that the area A(R) of the region enclosed by C can be calculated using the formula A(R) = ∮xdy.

To show that the area A(R) of the region enclosed by the curve C is given by the formula A(R) = ∮xdy, we need to express the curve C as a parametric equation. Let's denote the parametric equation of C as r(t) = (x(t), y(t)), where t ranges from a to b. By applying Green's theorem, we can rewrite the double integral of dA over R as the line integral ∮xdy over C. Using the parameterization r(t), the line integral becomes ∫[a,b]x(t)y'(t)dt. Since the curve is counterclockwise, the orientation of the integral is correct for calculating the area.

To know more about Green's theorem here: brainly.com/question/30763441

#SPJ11

3. Limits Analytically. Calculate the following limit analytically, showing all work/steps/reasoning for full credit! f(2+x)-f(2) lim for f(x)=√√3x-2 x-0 X 4. Limits Analytically. Use algebra and the fact learned about the limits of sin(0) 0 limit analytically, showing all work! L-csc(4L) lim L-0 7 to calculate the following

Answers

The limit is undefined

Let's have further explanation:

The limit can be solved using the definition of a limit.

Let L=0

Then,

                      lim L→0 L-csc(4L)

                             = lim L→0 L-1/sin(4L)

                             = lim L→0 0-1/sin(4L)

                             = -1/lim L→0 sin(4L)

Since sin(x) is a continuous function and lim L→0 sin(4L) = 0,

                                lim L→0 L-csc(4L) = -1/0

The limit is therefore undetermined.

To know more about limit refer here:

https://brainly.com/question/12383180#

#SPJ11

Find the relative extrema, if any, of 1)= e' - 91-8. Use the Second Derivative Test, if possible,

Answers

The function has a relative maximum at (0, -7) and a relative minimum at (1, e - 91 - 8).

To find the relative extrema of the function f(x) = eˣ - 91x - 8, we will calculate the first and second derivatives and perform direct calculations.

First, let's find the first derivative f'(x) of the function:

f'(x) = d/dx(eˣ - 91x - 8)

= eˣ - 91

Next, we set f'(x) equal to zero to find the critical points:

eˣ - 91 = 0

eˣ = 91

x = ln(91)

The critical point is x = ln(91).

Now, let's find the second derivative f''(x) of the function:

f''(x) = d/dx(eˣ - 91)

= eˣ

Since the second derivative f''(x) = eˣ is always positive for any value of x, we can conclude that the critical point at x = ln(91) corresponds to a relative minimum.

Finally, we can calculate the function values at the critical point and the endpoints:

f(0) = e⁰ - 91(0) - 8 = 1 - 0 - 8 = -7

f(1) = e¹ - 91(1) - 8 = e - 91 - 8

Comparing these function values, we see that f(0) = -7 is a relative maximum, and f(1) = e - 91 - 8 is a relative minimum.

learn more about Relative maximum here:

https://brainly.com/question/30960875

#SPJ4

Other Questions
earley corporation issued perpetual preferred stock with a 12% annual dividend. the stock currently yields 8%, and its par value is $100. round your answers to the nearest cent. what is the stock's value? s+1 5. (15 pts) Find the inverse Laplace Transform of 2s -e 8(52-2) Plese compute the given limit|x2 + 4x - 5 lim (Hint: rewrite the function as a piecewise function, and compute the X 1 limit from the left and the right.) x+1 a sulfide ion has a charge of and is at the origin, where it experiences an electric force of , due to some unknown charged object nearby. what is the (vector) electric field at the origin? Which of the following statements is correct? The yield to maturity (YTM) is used for cost of equity after adjusting for the tax deductibility of interest on equity All the answers are correct. Long-term debt typically describes debt with a maturity less than one year. Afirm's cost of capital is a weighted average of all its financing costs. The proportions of debt and equity used to determine the weighted average cost of capital for a firm is based on the book value of debt and equity outstanding. XYZ corp expects to earn $4 per share next year and plow back 37.5% of its earnings (i.e., it expects to pay out a dividend of $2.5 per share, representing 62.5% of its earnings). The dividends are expected to grow at a constant sustainable growth rate and the stocks are currently priced at $30 per share. How much of the stock's $30 price is reflected in Present Value of Growth Opportunities (PVGO) if the investors' required rate of return is 20%? (Hint: PVGO = value with growth - value with no growth when no earnings is plowed back)1. $82. $103. $64. $0 show work no calculatorFind the length of the curve = 2 sin (0/3); 0 Find the unit tangent vector T(t).r(t) = e2ti + cos(t)j sin(3t)k, P(l, 1, 0)Find a set of parametric equations for the tangent line to the space curve at point P. (Enter your answers as a comma-separated list of equations. Use t for the variable of parameterization.) How many atoms of carbon are there in 0.37 mol of procaine, C13H20N202. a "pain killer" used by dentists? select all the statements about improvisation in nonwestern music. Rajesh contributed appreciated property to the RS Partnership in year 1. In year 4, that property was distributed to Simon. Which one of the following statements best captures the tax consequences of the distribution? Assume the partnership has no hot assets, the property value has increased since the original contribution and none of the precontribution gain has previously been recognized.a.Simon recognizes the precontribution gain and increases his basis in the partnership interest; the partnership's basis in other property is increased by the amount of recognized gain.b.The partnership recognizes the precontribution gain; Simon's basis in the property is increased by the amount of recognized gain.c.Distributions are tax-deferred transactions; because no cash is distributed, neither the partners nor the partnership recognize gain on the distribution.d.Rajesh recognizes the precontribution gain and increases his basis in the partnership interest; Simon's basis in the distributed property is increased by the amount of recognized gain. For a lockset installation, professionals generally prefer to use _____.a routera boring jig and boring bitthe manufacturer's templatea hole saw In the dividend-growth model, increases in stock value are associated with: Increases in the growth rate and dividends; decreases in the required rate of return. Increases in the required rate of retu whats the main character of two can keep a secret? why does body temperature rise during malignant hyperthermia Use f(x) = 3x (a) (fog)(x) 5 and g(x) = 4 x to evaluate the expression. X (fog)(x) = (b) (gof)(x) (gof)(x) = Explain, in your own words, the difference between the first moments and the secondmoments about the x and y axis of a sheet of variable density Lina goes to another bank that offers her 7% interest on her $200. After 1 year, how much would she have earned? An object has the velocity vector function v(t) = (1, 8e2t, 2t + 8) = and initial position F(0) = (2, 4,1) = A) Find the vector equation for the object's position. r(t) = B) Find the vector equati clinical and counseling psychologists have more in common than there are differences between the two professionstruefalse Steam Workshop Downloader