Answer:
50N
Explanation:
force it is falling with can be found by mass into acceleration and then devide by half to find force that could stop it in 2 sec
Philosophy: The Big Picture Unit 8
Would an existentialist argue that the study of philosophy was a good use of a life?
A. Yes, if society valued the results of the study.
B. Yes, but only if the individual found it meaningful.
C. No, a life should be spent minimizing the role of anxiety.
D. No, there is no way that philosophy could create a meaningful life.
One of the scientists suggests that he can build a
cooling system for the theoretical photovoltaic cells
Experiment 2, which will keep the cells 1°C cooler
dan normal but decrease their efficiency by 1%. The
teoretical photovoltaic cells capturing which frequency
ranges
, if any, would benefit from this cooling system?
Answer: SORRY
SORRY AM DOING IT FOR POINTS
Explanation:
120CD 165
उपम
DDL SL
NOH
3-33010
to
ग
tuous
car
Fusung
ता पनि
2 calcalcul e.
Power
dissipated in
heater if there
current flowing through
Ila 12v
headlamp
wh
flow the
L resistance cf ko a
Current
of 2A
प्ण्णा
5
a
through which a
is flowing
Why do astronomers use frequencies other than the visible ones when they are
investigating the universe?
Before we make measurements, let's make sure we understand the circuit. 1. Select all of the following that correctly describe what a volt meter and ammeter measure. Select all that apply: A volt meter measures the potential difference (or voltage) across a circuit element. A volt meter measures the potential difference (or voltage) passing through a circuit element. A ammeter measures the electric current passing through a circuit element. A ammeter measures the electric current across a circuit element.
Answer:
the correct answers are a and c
Explanation:
In an electrical circuit there are two important quantities to measure, such as voltage and current.
Voltage is the potential difference between two points in a circuit
current is the number of electrons you pass through a given point per unit of time.
Now let's analyze each answer
a) true. The potential difference across an element
b) False. The potential difference is u field there is no physical entity that moves
c) True. The current is electrons in motion and these pass through the given element
d) False. There is a physical quantity that passes through the point
the correct answers are a and c
sinat
Accelerationa
2 2.84
7 34
TABLE
in Elination
t2 t3 T2 2
1=0.04
2.29 1.25 1.28 1.271.61
2 460 = 0.00 4.59 1.16 1.081.12 1-25
3 so = 0.12 6.89 0.88
097 0.53
4. = 0.16 9.210.8
9.21 0.850.796. 82/0.67
(So
0.72 0.77 0.75 l 0-56/
0.28
49. al
27. 49
13 11%.
41. 2L
= 0.2 11.54
Answer:
so you have a question
Explanation:
either way,you have a nice day
Select the correct answer.
Which of the following best describes an intermediate runner?
A. Able to alternate running 2 minutes, walking 1 minute
B. Able to run a mile without stopping
C. Able to run at least 30 minutes, 3-5 times a week
D. Able to run 1 mile in 10 minutes or less
I would say answer D
A is very easy, so that's off the table, while be is a little too advanced for intermediate, and C is way to advanced for intermediate.
So yeah, D
A wave has a frequency of 30Hz and wave length of 40cm. What is the velocity of the wave?
Answer:
12m/s
Explanation:
v=fλ
30×(40÷100)=
12m/s
A house is lifted from its foundations onto a truck for relocation. The house is pulled upward by a net force of 2850 N. This force causes the house to move from rest to an upward speed of 15 cm/s in 5.0 s. What is the mass of the house?
Answer:
m = 95000 kg
Explanation:
Given that,
Net force acting on the house, F = 2850 N
Initial speed, u = 0
Final speed, v = 15 cm/s = 0.15 m/s
We need to find the mass of the house. Let the mass be m. We know that the net force is given by :
F = ma
Where
a is the acceleration of the house.
So,
[tex]F=m\dfrac{v-u}{t}\\\\m=\dfrac{Ft}{(v-u)}\\\\m=\dfrac{2850\times 5}{(0.15-0)}\\\\m=95000\ kg[/tex]
So, the mass of the house is equal to 95000 kg.
A 5kg block rests on a 30° incline. The coefficient of static friction between the block and the incline is 0.20. How large a horizontal force must push on the block if the block is to be on the verge of sliding. a) up the incline, b) down the incline ?
Answer:
Hope It Help
Explanation:
That's all I know
1 kg block slides down a frictionless inclined plane that makes an angle of 300 with respect to the ground. The total length of the plane is 2 m, but midway down it collides with a second block, weighing 0.5 kg. The two blocks stick together and travel as one unit the rest of the way down the ramp. What is the kinetic energy of the combined 1.5 kg block when it reaches the bottom of the plane
Answer:
the kinetic energy of the combined 1.5 kg block when it reaches the bottom of the plane is 10.62 J
Explanation:
Given that the data in the question;
angle of inclination with respect to the ground [tex]\theta[/tex] = 30°
length of plane d = 2m
m₁ = 1 kg
m₂ = 0.5 kg
now, velocity of the first block at midpoint;
[tex]\frac{1}{2}[/tex]mv² = mgsin[tex]\theta[/tex][tex]\frac{d}{2}[/tex]
[tex]\frac{1}{2}[/tex]v² = gsin[tex]\theta[/tex][tex]\frac{d}{2}[/tex]
v² = gsin[tex]\theta[/tex]d
v = √( gsin[tex]\theta[/tex]d)
g is 9.8 m/s
so we substitute
v = √( 9.8 × sin30° × 2)
v = √( 19.6 )
v = 3.13 m/s
Now, velocity just after collision of the blocks will be;
(m₁ + m₂)v₂ = m₁v
v₂ = m₁v / (m₁ + m₂)
we substitute
v₂ = (1 × 3.13) / (1 + 0.5)
v₂ = 3.13 / 1.5
v₂ = 2.0866 m/s
now, final kinetic energy will be;
[tex]KE_f[/tex] = (m₁ + m₂)gsin[tex]\theta[/tex][tex]\frac{d}{2}[/tex] + Initial Kinetic energy
[tex]KE_f[/tex] = (m₁ + m₂)gsin[tex]\theta[/tex][tex]\frac{d}{2}[/tex] + [tex]\frac{1}{2}[/tex]mv₂²
we substitute
[tex]KE_f[/tex] = [(1 + 0.5)9.8 × sin30 × [tex]\frac{2}{2}[/tex]] + [[tex]\frac{1}{2}[/tex] × 1.5 × 2.0866 ]
[tex]KE_f[/tex] = 7.35 + 3.2654
[tex]KE_f[/tex] = 10.62 J
Therefore, the kinetic energy of the combined 1.5 kg block when it reaches the bottom of the plane is 10.62 J