13. Find the arc length of the given curve on the indicated interval. x=2t, y=t,0st≤1

Answers

Answer 1

The arc length of the curve x = 2t, y = t, on the interval 0 ≤ t ≤ 1, is approximately 2.24 units.

To calculate the arc length, we can use the formula:

Arc length =[tex]\int\limits {\sqrt{(dx/dt)^2 + (dy/dt)^2} dt[/tex]

In this case, dx/dt = 2 and dy/dt = 1. Substituting these values into the formula, we have:

[tex]Arc length = \int\limits\sqrt{[(2)^2 + (1)^2] } dt \\ =\int\limits\sqrt{[4 + 1]}dt \\\\ = \int\limits\sqrt{[5]} dt \\ = \int\limits\sqrt{5} dt[/tex]

Evaluating the integral, we find:

Arc length = [2√5] from 0 to 1

          = 2√5 - 0√5

          = 2√5

Therefore, the arc length of the given curve on the interval 0 ≤ t ≤ 1 is approximately 2.24 units.

Learn more about arc length here:

https://brainly.com/question/31762064

#SPJ11


Related Questions




If {x, y, z, w} is a linearly independent set in R", which of the following sets is linearly independent? - 0 {x - y, y - 2, Z – w, w - x} {x+y, y + z, 2 + x} 0 {x - y, y – 2, Z – x} O {x+y, y

Answers

The set {x - y, y - 2, z - w, w - x} is linearly independent.

A set of vectors is linearly independent if no vector in the set can be expressed as a linear combination of the other vectors in the set. To determine if a set is linearly independent, we can set up a linear system of equations and check if the only solution is the trivial solution (all coefficients equal to zero).

In the given set {x - y, y - 2, z - w, w - x}, let's assume we have a linear combination of these vectors that equals the zero vector: a(x - y) + b(y - 2) + c(z - w) + d(w - x) = 0, where a, b, c, and d are coefficients. Expanding this equation, we get ax - ay + by - 2b + cz - cw + dw - dx = 0. Rearranging the terms, we have (a - d)x + (b - a + c) y + (c - w)z + (d - b)w = 0. To satisfy this equation, all coefficients must be equal to zero. This implies a - d = 0, b - a + c = 0, c - w = 0, and d - b = 0. Solving these equations, we find a = d, b = (a - c), c = w, and d = b. Since there is no non-trivial solution for these equations, the set {x - y, y - 2, z - w, w - x} is linearly independent.

Learn more about coefficient here:

https://brainly.com/question/13431100

#SPJ11

What is the probability of rolling two of the same number?
Simplify your fraction.

Answers

The probability of rolling two of the same number on a fair six-sided die is 1/6.

To calculate the probability of rolling two of the same number on a fair six-sided die, we need to determine the total number of possible outcomes and the number of favorable outcomes.

Total number of possible outcomes:

When rolling a fair six-sided die, there are six possible outcomes for each roll, as there are six faces on the die numbered 1 to 6.

Number of favorable outcomes:

To roll two of the same number, we can choose any number from 1 to 6 for the first roll.

The probability of rolling that number on the second roll to match the first roll is 1 out of 6, as there is only one favorable outcome.

This holds true for any number chosen for the first roll.

Therefore, there are 6 favorable outcomes, one for each number on the die.

Probability:

The probability of an event is calculated by dividing the number of favorable outcomes by the total number of possible outcomes.

Probability of rolling two of the same number = Number of favorable outcomes / Total number of possible outcomes

= 6 / 36

= 1 / 6

Thus, the probability of rolling two of the same number on a fair six-sided die is 1/6.

For similar question on probability.

https://brainly.com/question/30768613  

#SPJ8

Water is flowing at the rate of 50m^3/min into a holding tank shaped like an cone, sitting vertex down. The tank's base diameter is 40m and a height of 10m.
A.) Write an expression for the rate of change of water level with respect to time, in terms of h ( the waters height in the tank).
B.) Assume that, at t=0, the tank of water is empty. Find the water level, h as a function of the time t.
C.) What is the rate of change of the radius of the cone with respect to time when the water is 8 meters deep?

Answers

Therefore, the rate of change of the radius of the cone with respect to time when the water is 8 meters deep is twice the rate of change of the water level with respect to time at that point.

A.) To find the rate of change of water level with respect to time, we can use the concept of similar triangles. Let h be the height of the water in the tank. The radius of the cone at height h can be expressed as r = (h/10) * 20, where 20 is half the diameter of the base.

The volume of a cone can be calculated as V = (1/3) * π * r^2 * h. Taking the derivative with respect to time, we get:

dV/dt = (1/3) * π * (2r * dr/dt * h + r^2 * dh/dt)

Since the water is flowing into the tank at a rate of 50 m^3/min, we have dV/dt = 50. Substituting the expression for r, we get:

50 = (1/3) * π * (2 * ((h/10) * 20) * dr/dt * h + ((h/10) * 20)^2 * dh/dt)

Simplifying, we have:

50 = (1/3) * π * (4 * h * (h/10) * dr/dt + (h/10)^2 * 20^2 * dh/dt)

B.) At t = 0, the tank is empty, so the water level is h = 0. As water flows into the tank at a constant rate, the water level increases linearly with time. Therefore, the water level, h, as a function of time, t, can be expressed as:

h(t) = (50/600) * t

C.) To find the rate of change of the radius of the cone with respect to time when the water is 8 meters deep, we can differentiate the expression for the radius with respect to time. The radius of the cone at height h can be expressed as r = (h/10) * 20.

Taking the derivative with respect to time, we have:

dr/dt = (1/10) * 20 * dh/dt

Substituting the given depth h = 8 into the equation, we get:

dr/dt = (1/10) * 20 * dh/dt = 2 * dh/dt

To know more about rate of change,

https://brainly.com/question/1553593

#SPJ11

Solve the given differential equation. Use с for the constant of differentiation.
y′=(x^(6))/y

Answers

The differential equation is solved to give;

y = [tex]\sqrt{\frac{2x^7}{7} + 2c}[/tex]

How to determine the differentiation

To solve the differential equation:

y' = (x⁶)/y

Let's use the technique of separating the variables.

First, let us reconstruct the equation by performing a y-based multiplication on both sides.

y × y' = x⁶

Multiply the values

yy' = x⁶

Integrate both sides, we have;

∫ y dy = ∫   x⁶dx

Introduce the constant of differentiation as c, we get;

[tex]\frac{y^2}{2} = \frac{x^7}{7} + c[/tex]

Now, multiply both sides by 2, we get;

[tex]y^2 = \frac{2x^7}{7 } + 2c[/tex]

Find the square root of both sides;

y = [tex]\sqrt{\frac{2x^7}{7} + 2c}[/tex]

Learn more about differentiation at: https://brainly.com/question/25081524

#SPJ4

Let I = 1,01**/3-2/3431 VI-x*+y dzdydx. By converting I into an equivalent triple integral in cylindrical coordinates, we obtain: 1 = TN, 472-* rdzardo 1 = 5*55,2" rdzdrdo This option o This option No

Answers

The above expression, we obtain the final result for I in cylindrical coordinates.

To convert the given expression into an equivalent triple integral in cylindrical coordinates, we'll first rewrite the expression I = ∭V f(x, y, z) dz dy dx using cylindrical coordinates.

In cylindrical coordinates, we have the following transformations:

x = r cos(θ)

y = r sin(θ)

z = z

The Jacobian determinant for the cylindrical coordinate transformation is r. Hence, dx dy dz = r dz dr dθ.

Now, let's rewrite the integral I in cylindrical coordinates:

I = ∭V f(x, y, z) dz dy dx= ∭V f(r cos(θ), r sin(θ), z) r dz dr dθ

Substituting the given values, we have:

I = ∫[θ=0 to 2π] ∫[r=0 to 1] ∫[z=4 to 7] r^(2/3) - 2/3431 (r cos(θ))^2 + (r sin(θ))^2 dz dr dθ

Simplifying the integrand, we have:

I = ∫[θ=0 to 2π] ∫[r=0 to 1] ∫[z=4 to 7] r^(2/3) - 2/3431 (r^2) dz dr dθ

Now, we can integrate with respect to z, r, and θ:

∫[z=4 to 7] r^(2/3) - 2/3431 (r^2) dz = (7 - 4) (r^(2/3) - 2/3431 (r^2)) = 3 (r^(2/3) - 2/3431 (r^2))

∫[r=0 to 1] 3 (r^(2/3) - 2/3431 (r^2)) dr = 3 ∫[r=0 to 1] (r^(2/3) - 2/3431 (r^2)) dr = 3 (3/5 - 2/3431)

∫[θ=0 to 2π] 3 (3/5 - 2/3431) dθ = 3 (3/5 - 2/3431) (2π)

Evaluating the above expression, we obtain the final result for I in cylindrical coordinates.

Learn more about cylindrical coordinates: https://brainly.com/question/31473499

#SPJ11

Let A be a a × b matrix. If the linear transformation T(x) from R^4 to R^5 is defined by T(x) = Ax, how many rows and columns does the matrix A have? a=________ b=__________

Answers

The matrix A has a rows and b columns. In this case, a represents the number of rows and b represents the number of columns in matrix A.

The linear transformation T(x) from [tex]R^4[/tex] to [tex]R^5[/tex] is defined by multiplying the vector x in R^4 with the matrix A. In matrix multiplication, the number of columns in the first matrix (A) must be equal to the number of rows in the second matrix (x) for the multiplication to be defined. Since the transformation is from R^4 to R^5, the matrix A must have the same number of columns as the dimension of the vector in R^4 and the same number of rows as the dimension of the vector in R^5. Therefore, the matrix A has a rows and b columns.

Learn more about linear transformation here:

https://brainly.com/question/13595405

#SPJ11

Pls help, A, B or C?

Answers

There is no error. This is a correct conclusion, option C is correct.

Vinay correctly concluded that Segment AB and CD have no angles with the same measurements, which means they are not congruent.

If two line segments coincide or overlap, it means they occupy the same space and have the same length.

However, congruence refers to the overall similarity and equality of all corresponding parts of two geometric figures.

Since the angles in the coinciding segments are not equal, they cannot be considered congruent.

To learn more on Congruence click:

https://brainly.com/question/31992651

#SPJ1

which box and whisker plot has the greatest interquartile range (iqr)?responsesbottom plotbottom plottop plottop plot

Answers

The box and whisker plot with the greatest interquartile range (IQR) is the one with the largest vertical distance between the upper and lower quartiles. Looking at the given responses, it is difficult to determine which plot has the greatest IQR without actually seeing the plots. However, if we assume that all the plots have a similar scale, the bottom plot is likely to have the greatest IQR as the box appears to be longer than the other plots.

The IQR is the range between the first quartile (Q1) and the third quartile (Q3) of a data set. It represents the middle 50% of the data and is a measure of variability. The greater the IQR, the more spread out the data is.

To determine which box and whisker plot has the greatest IQR, we need to compare the length of the boxes of each plot. Assuming a similar scale, the bottom plot is likely to have the greatest IQR.

To know more about interquartile range visit:

https://brainly.com/question/29204101

#SPJ11

Using a table of integration formulas to find each indefinite integral for parts b & c. b) 9x6 9x6 In x dx. 2 c) 5x (7x + 7) dx S

Answers

b) To find the indefinite integral of 9x^6 * ln(x) dx, we can use integration by parts.

Let u = ln(x) and dv = 9x^6 dx. Then, du = (1/x) dx and v = (9/7)x^7.

Using the integration by parts formula ∫ u dv = uv - ∫ v du, we have:

∫ 9x^6 * ln(x) dx = (9/7)x^7 * ln(x) - ∫ (9/7)x^7 * (1/x) dx

                 = (9/7)x^7 * ln(x) - (9/7) ∫ x^6 dx

                 = (9/7)x^7 * ln(x) - (9/7) * (1/7)x^7 + C

                 = (9/7)x^7 * ln(x) - (9/49)x^7 + C

Therefore, the indefinite integral of 9x^6 * ln(x) dx is (9/7)x^7 * ln(x) - (9/49)x^7 + C, where C is the constant of integration.

c) To find the indefinite integral of 5x(7x + 7) dx, we can expand the expression and then integrate each term separately.

∫ 5x(7x + 7) dx = ∫ (35x^2 + 35x) dx

              = (35/3)x^3 + (35/2)x^2 + C

Therefore, the indefinite integral of 5x(7x + 7) dx is (35/3)x^3 + (35/2)x^2 + C, where C is the constant of integration.

Visit here to learn more about integration:

brainly.com/question/31744185

#SPJ11

write the following system as a matrix equation involving the product of a matrix and a vector on the left side and a vector on the right side. 2x1 x2 - 5x3

Answers

The given system, 2x1 + x2 - 5x3, can be written as a matrix equation by representing the coefficients of the variables as a matrix and the variables themselves as a vector on the left side, and the result of the equation on the right side.

In a matrix equation, the coefficients of the variables are represented as a matrix, and the variables themselves are represented as a vector. The product of the matrix and the vector represents the left side of the equation, and the result of the equation is represented by a vector on the right side.

For the given system, we can write it as:

⎡2 1 -5⎤ ⎡x1⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ = ⎢ ⎥

⎢ ⎥ ⎢x2⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣x3⎦ ⎣ ⎦

Here, the matrix on the left side represents the coefficients of the variables, and the vector represents the variables x1, x2, and x3. The result of the equation, which is on the right side, is represented by an empty vector.

This matrix equation allows us to represent the given system in a compact and convenient form for further analysis or solving.

Learn more about matrix  here:

https://brainly.com/question/29132693

#SPJ11

which of the following sentence completions are a binary search tree, every element 'a' is .....group of answer choices... a. lesser than all elements in its left subtree.... b. greater than all elements in its left subtree.... c. lesser than all elements in its right subtree.... d. greater than all its descendants... e. greater than all elements in its right subtree.

Answers

Options a, d, and e could describe a binary search tree while the rest doesn't.

In a binary search tree (BST), every element 'a' has certain properties regarding its position relative to other elements in the tree. Let's analyze it:

a. "Lesser than all elements in its left subtree": This statement would hold true in a BST. In a BST, the left subtree contains elements that are smaller than the current element.

b. "Greater than all elements in its left subtree": This statement would not hold true in a BST. In a BST, the left subtree contains elements that are smaller than the current element, so 'a' cannot be greater than all elements in its left subtree.

c. "Lesser than all elements in its right subtree": This statement would not hold true in a BST. In a BST, the right subtree contains elements that are greater than the current element, so 'a' cannot be lesser than all elements in its right subtree.

d. "Greater than all its descendants": This statement would hold true in a BST. In a BST, all elements in the left subtree are smaller than the current element, and all elements in the right subtree are greater. Therefore, 'a' would be greater than all its descendants.

e. "Greater than all elements in its right subtree": This statement would hold true in a BST. In a BST, the right subtree contains elements that are smaller than the current element, so 'a' can be greater than all elements in its right subtree.

In summary, options a, d, and e could describe a binary search tree, while options b and c would not accurately describe a binary search tree.

To know more about binary search tree refer here:

https://brainly.com/question/30391092?#

#SPJ11

For a vector x = (x -N, ..., X–1,X0, X1,...,xn) E R2N+1 the discrete and finite Hilbert transform Hy is defined as X; (). = Σ (Hyx) i-j

Answers

The discrete and finite Hilbert transform Hy of a vector x = (x-N, ..., x-1, x0, x1, ..., xn) in R⁽²N⁺¹⁾ is defined as:

Hy(x)i = Σ (Hyx)i-j

This equation represents the sum of the Hilbert transformed values (Hyx)i-j over all dice j, where Hyx represents the Hilbert transform of the original vector x.

The Hilbert transform is a mathematical operation that operates on a given function or sequence and produces a new function or sequence that represents the imaginary part of the analytic signal associated with the original function or sequence.

In the case ofHilbert transform Hy, it computes the Hilbert transformed values for each element of the vector x. The index i represents the current element for which we are calculating the Hilbert transform, and j represents the index of the neighboring elements of x.

The specific formula for calculating the Hilbert transform depends on the chosen method or algorithm, such as using discrete Fourier transform or other numerical techniques. The Hilbert transform is commonly used in signal processing and communication applications for tasks such as phase shifting, envelope detection, and frequency analysis.

Learn more about dice here:

https://brainly.com/question/28198792

#SPJ11

8. Find the number of units x that produces the minimum average cost per unit C in the given equation. C = 2x2 + 349x + 9800

Answers

The value of x that produces the minimum average cost per unit C is approximately x = -87.25.

The given equation is C = [tex]2x^2[/tex] + 349x + 9800. To find the number of units x that produces the minimum average cost per unit C, we need to find the minimum value of C and then determine the value of x at which this minimum occurs.

We note that C is a quadratic function of x and, since the coefficient of [tex]2x^2[/tex]  is positive, this function is a parabola that opens upward. Thus, the minimum value of C occurs at the vertex of the parabola.

To find the vertex of the parabola, we use the formula for the x-coordinate of the vertex, which is given: by:

[tex]$$x_{\text{vertex}}=-\frac{b}{2a}$$[/tex] where a = 2 and b = 349 are the coefficients of [tex]2x^2[/tex]  and x, respectively.

Substituting these values into the formula gives:

[tex]$$x_{\text{vertex}}=-\frac{349}{2(2)}=-\frac{349}{4}=-87.25$$[/tex]

Therefore, the value of x that produces the minimum average cost per unit C is approximately x = -87.25.

However, it is not meaningful to have a negative number of units, so we need to consider the value of x that produces the minimum cost per unit for positive values of x.

To find the minimum value of C for positive values of x, we substitute x = 0 into the equation to get: [tex]C = 2(0)^2 + 349(0) + 9800 = 9800[/tex]

Therefore, the minimum average cost per unit occurs when x = 0, which means that the number of units that produces the minimum average cost per unit is zero.

Learn more about cost here:

https://brainly.com/question/14415150

#SPJ11

QUESTION 4 Find the second derivative. y = 2x2 + 8x + 5x -3 4x+8-15x-4 04-60x-5 4 + 60x-1 4 + 60x-5

Answers

To find the second derivative of the given function, we need to differentiate it twice with respect to x.

First, let's simplify the function:

y = 2x^2 + 8x + 5x - 3

= 2x^2 + 13x - 3

Now, let's differentiate it once to find the first derivative:

y' = d/dx(2x^2 + 13x - 3)

= 4x + 13

Finally, we differentiate the first derivative to find the second derivative:

y'' = d/dx(4x + 13)

= 4

Therefore, the second derivative of the given function is y'' = 4.

To learn more about derivative visit:

brainly.com/question/17298632

#SPJ11




Use Logarithmic Differentiation to help you find the derivative of the Tower Function y = (cot(3x)) x2 Note: Your final answer should be expressed only in terms of x.

Answers

The derivative of the given function y = (cot(3x))^x^2 can be found using logarithmic differentiation.

Taking the natural logarithm of both sides and applying the properties of logarithms, we can simplify the expression and differentiate it with respect to x. Finally, we can solve for dy/dx.

To find the derivative of the function y = (cot(3x))^x^2 using logarithmic differentiation, we start by taking the natural logarithm of both sides:

[tex]ln(y) = ln((cot(3x))^x^2)[/tex]

Using the properties of logarithms, we can simplify the expression:

[tex]ln(y) = x^2 * ln(cot(3x))[/tex]

Now, we differentiate both sides with respect to x:

[tex](d/dx) ln(y) = (d/dx) [x^2 * ln(cot(3x))][/tex]

Using the chain rule, the derivative of ln(y) with respect to x is (1/y) * (dy/dx):

(1/y) * (dy/dx) = 2x * ln(cot(3x)) + x^2 * (1/cot(3x)) * (-csc^2(3x)) * 3

Simplifying the expression:

dy/dx = y * (2x * ln(cot(3x)) - 3x^2 * csc^2(3x))

Since y = (cot(3x))^x^2, we substitute this back into the equation:

dy/dx = (cot(3x))^x^2 * (2x * ln(cot(3x)) - 3x^2 * csc^2(3x))

Therefore, the derivative of the Tower Function y = (cot(3x))^x^2 is given by (cot(3x))^x^2 * (2x * ln(cot(3x)) - 3x^2 * csc^2(3x)).

Learn more about differentiation here:

https://brainly.com/question/31383100

#SPJ11

A) 18 B) 17 52) x2.7 52) h(x) = x+6 (x-2 A) - 8 if x2-6 :h(-6) if x. -6 B) undefined C) 8 D) -4 53) -1

Answers

We are given a function h(x) = x + 6(x - 2). We are to find the value of h(-6) or the value of h(x) at x = -6.Putting the value of x = -6 in the function, we geth(-6) = -6 + 6(-6 - 2).

Now, solving the right-hand side of the above expression gives-6 + 6(-6 - 2) = -6 - 48 = -54.

Hence, the value of the function h(x) = x + 6(x - 2) at x = -6 is undefined.

The value of the function h(x) = x + 6 (x - 2) at x = -6 is undefined. The given function is h(x) = x + 6(x - 2).

Therefore, h(-6) = -6 + 6(-6 - 2) = -6 + 6(-8) = -6 - 48 = -54.

So, the answer is option B) undefined.

Learn more about value of the function here ;

https://brainly.com/question/29752390

#SPJ11

how would you show mathematically that the largest eigenvalue of the (symmetric) adjacency matrix a is less or equal than the maximum node degree in the network?

Answers

To show mathematically that the largest eigenvalue of a symmetric adjacency matrix A is less than or equal to the maximum node degree in the network, we can use the Gershgorin Circle Theorem.

What is eigenvalue?

The unique collection of scalars known as eigenvalues is connected to the system of linear equations. The majority of matrix equations employ it. The German word "Eigen" signifies "proper" or "characteristic."

To show mathematically that the largest eigenvalue of a symmetric adjacency matrix A is less than or equal to the maximum node degree in the network, we can use the Gershgorin Circle Theorem.

The Gershgorin Circle Theorem states that for any eigenvalue λ of a matrix A, λ lies within at least one of the Gershgorin discs. Each Gershgorin disc is centered at the diagonal entry of the matrix and has a radius equal to the sum of the absolute values of the off-diagonal entries in the corresponding row.

In the case of a symmetric adjacency matrix, the diagonal entries represent the node degrees (the number of edges connected to each node), and the off-diagonal entries represent the weights of the edges between nodes.

Let's assume that [tex]d_i[/tex] represents the degree of node i, and λ is the largest eigenvalue of the adjacency matrix A. According to the Gershgorin Circle Theorem, λ lies within at least one of the Gershgorin discs.

For each Gershgorin disc centered at the diagonal entry [tex]d_i[/tex], the radius is given by:

[tex]R_i[/tex] = ∑ |[tex]a_ij[/tex]| for j ≠ i,

where [tex]a_ij[/tex] represents the element in the ith row and jth column of the adjacency matrix.

Since the adjacency matrix is symmetric, each off-diagonal entry [tex]a_ij[/tex] is non-negative. Therefore, we can write:

[tex]R_i[/tex] = ∑ [tex]a_ij[/tex] for j ≠ i ≤ ∑ [tex]a_ij[/tex] for all j,

where the sum on the right-hand side includes all off-diagonal entries in the ith row.

Since the sum of the off-diagonal entries in the ith row represents the total weight of edges connected to node i, it is equal to or less than the node degree [tex]d_i[/tex]. Thus, we have:

[tex]R_i \leq d_i[/tex].

Applying the Gershgorin Circle Theorem, we can conclude that the largest eigenvalue λ is less than or equal to the maximum node degree in the network:

λ ≤ max([tex]d_i[/tex]).

Therefore, mathematically, we have shown that the largest eigenvalue of a symmetric adjacency matrix A is less than or equal to the maximum node degree in the network.

Learn more about eigenvalue on:

https://brainly.com/question/30715889

#SPJ4

+ like
Find the absolute maximum and minimum values of the function, subject to the given constraints. k(x,y)= ) = − x² − y² + 12x + 12y; 0≤x≤7, y≥0, and x+y≤ 14 The minimum value of k is (Simp

Answers

The absolute maximum value of the function k(x, y) = -x² - y² + 12x + 12y, subject to the given constraints, occurs at the point (7, 0) with a value of 49. The absolute minimum value occurs at the point (0, 14) with a value of -140.

To find the absolute maximum and minimum values of the function k(x, y) subject to the given constraints, we need to evaluate the function at the critical points and the endpoints of the feasible region.

The feasible region is defined by the constraints 0 ≤ x ≤ 7, y ≥ 0, and x + y ≤ 14. The boundary of this region consists of the lines x = 0, y = 0, and x + y = 14.

First, we evaluate the function k(x, y) at the critical points, which are the points where the partial derivatives of k(x, y) with respect to x and y are equal to zero. Taking the partial derivatives, we get:

∂k/∂x = -2x + 12 = 0,

∂k/∂y = -2y + 12 = 0.

Solving these equations, we find the critical point to be (6, 6). We evaluate k(6, 6) and find that it equals 0.

Next, we evaluate the function k(x, y) at the endpoints of the feasible region. We compute k(0, 0) = 0, k(7, 0) = 49, and k(0, 14) = -140.

Finally, we compare the values of k(x, y) at the critical points and endpoints. The absolute maximum value of 49 occurs at (7, 0), and the absolute minimum value of -140 occurs at (0, 14).

Learn more about absolute maximum value here:

https://brainly.com/question/31383095

#SPJ11

= Let p(x,y) = e e2x+y+8y4 and let F be the gradient of . Find the circulation of F around the circle of radius 2 with center at the point (4, 4). Circulation =

Answers

The line integral of F over the circle is given by: Circulation = ∮ F · dr = ∫ F(x, y) · (dx, dy). since the expression for p(x, y) is not provided, we cannot obtain the exact result of the circulation without further information.

To find the circulation of the vector field F around the circle of radius 2 with the center at (4, 4), we need to evaluate the line integral of F along the boundary of the circle.

Given that F is the gradient of a scalar function p(x, y) = e^(2x+y+8y^4), we can express F as:

F = ∇p = (∂p/∂x, ∂p/∂y)

To calculate the circulation, we integrate F over the curve defined by the circle with radius 2 and center (4, 4). We parameterize the curve as

x = 4 + 2cos(t)

y = 4 + 2sin(t)

where t ranges from 0 to 2π to trace the entire circle.

Substituting these parameterizations into F, we have:

F = (∂p/∂x, ∂p/∂y) = (2e^(2x+y+8y^4), e^(2x+y+8y^4))

The line integral of F over the circle is given by:

Circulation = ∮ F · dr = ∫ F(x, y) · (dx, dy)

Using the parameterizations for x and y, we calculate the differential of the position vector dr as (dx, dy) = (-2sin(t), 2cos(t))dt.

Substituting all the values into the line integral, we get:

Circulation = ∫ F(x, y) · (dx, dy) = ∫ [2e^(2x+y+8y^4) * (-2sin(t)) + e^(2x+y+8y^4) * 2cos(t)] dt

Evaluate this integral from t = 0 to 2π to obtain the circulation of F around the given circle.

Unfortunately, since the expression for p(x, y) is not provided, we cannot obtain the exact result of the circulation without further information.

Learn more about line integral here:

https://brainly.com/question/29850528

#SPJ11

Match each of the following with the correct statement A. The series is absolutely convergent. C. The series converges, but is not absolutely convergent. D. The series diverges. in 1 123 1 1 1!5" 1.0 ( 4)" 2. 20 (114) 3. Lº sin(3) 4.29 (-1)11 (9\n)4" 4 (n)5 1 729 :4. 5. Σ 3n 16

Answers

5. Σ 3n^2 / 16^n: This is a series with terms that involve exponential growth. Since the base of the exponential term (16) is greater than 1, the series diverges. Therefore, the statement is D. The series diverges.

Matching each series with the correct statement:

1. Σ (1/2)^n: This is a geometric series with a common ratio of 1/2. Since the absolute value of the common ratio is less than 1, the series is absolutely convergent. Therefore, the statement is A. The series is absolutely convergent.

2. Σ (1/14)^n: This is a geometric series with a common ratio of 1/14. Since the absolute value of the common ratio is less than 1, the series is absolutely convergent. Therefore, the statement is A. The series is absolutely convergent.

3. Σ sin(3^n): The series does not have a constant common ratio and does not satisfy the conditions for a geometric series. However, since sin(3^n) oscillates without converging to a specific value, the series diverges. Therefore, the statement is D. The series diverges.

4. Σ (-1)^(n+1) / n^4: This is an alternating series with terms that decrease in magnitude and approach zero. Additionally, the terms satisfy the conditions for the Alternating Series Test. Therefore, the series converges but is not absolutely convergent. Therefore, the statement is C. The series converges but is not absolutely convergent.

To know more about series visit;

brainly.com/question/12474324

#SPJ11

Given f(t) == tx² + 12x + 20 1 + cos² (x) -dx At what value of t does the local max of f(t) occur? t

Answers

We cannot determine a specific value of t that corresponds to the local maximum.

The function f(t) is defined as f(t) = tx² + 12x + 20(1 + cos²(x)) - dx.

To find the local maximum of f(t), we need to find the critical points of the function. Taking the derivative of f(t) with respect to t, we get df(t)/dt = x².

Setting the derivative equal to zero, x² = 0, we find that the critical point occurs at x = 0.

Next, we need to determine the second derivative of f(t) with respect to t. Taking the derivative of df(t)/dt = x², we get d²f(t)/dt² = 0.

Since the second derivative is zero, we cannot determine the local maximum based on the second derivative test alone.

To further analyze the behavior of the function, we need to consider the behavior of f(t) as x varies. The term 20(1 + cos²(x)) - dx oscillates between 20 and -20, and it does not depend on t.

Thus, the value of t that determines the local maximum of f(t) will not be affected by the term 20(1 + cos²(x)) - dx.

In conclusion, the local maximum of f(t) occurs when x = 0, and the value of t does not affect the position of the local maximum. Therefore, we cannot determine a specific value of t that corresponds to the local maximum.

To learn more about function click here, brainly.com/question/30721594

#SPJ11

Write the following expressions without hyperbolic functions. (a) sinh(0) = Σ (b) cosh(0) = Σ (c) tanh(0) = M (d) sinh(1) = M (e) tanh(1) = W Help Entering Answers Preview My Answers Submit Answers Page generated

Answers

The expressions without hyperbolic functions are as follows:

(a) sinh(0) = 0,

(b) cosh(0) = 1,

(c) tanh(0) = 0,

(d) sinh(1) = [tex](e^{(1)} - e^{(-1)})/2[/tex], and

(e) tanh(1) = [tex](e^{(1)} - e^{(-1)})/(e^{(1)} + e^{(-1)})[/tex].

The hyperbolic functions sinh(x), cosh(x), and tanh(x) can be defined in terms of exponential functions. We can use these definitions to express the given expressions without hyperbolic functions.

(a) sinh(0) = [tex](e^{(0)} - e^{(-0)})/2[/tex] = (1 - 1)/2 = 0

(b) cosh(0) = [tex](e^{(0)} + e^{(-0)})/2[/tex] = (1 + 1)/2 = 1

(c) tanh(0) = [tex](e^{(0)} - e^{(-0)})/(e^{(0)} + e^{(-0)})[/tex] = (1 - 1)/(1 + 1) = 0

(d) sinh(1) = [tex](e^{(1)} - e^{(-1)})/2[/tex]

(e) tanh(1) = [tex](e^{(1)} - e^{(-1)})/(e^{(1)} + e^{(-1)})[/tex]

For expressions (d) and (e), we can leave them in this form as the exact values involve exponential functions. If you want an approximate decimal value, you can use a calculator to evaluate the expression.

To learn more about hyperbolic functions, refer:-

https://brainly.com/question/17131493

#SPJ11

If w = reyz then wzyx at at (5, -1,1) equals = 0 e (a) (b) (c) (d) (e) -e-1 не e 1

Answers

We enter the given numbers into the expression for wzyx in order to determine the value of wzyx at the location (5, -1, 1).

Let's first rebuild the wzyx equation using the supplied values:

The equation is: wzyx = reyz = r * (-1) * (1) * (5)

Given the coordinates (5, -1, 1), we may enter these values into the expression as follows:

Wzyx is equal to r * (-1) * (1) * (5), or -5r.

Wzyx thus has a value of -5r at the coordinates (5, -1, 1).

We are unable to precisely calculate the value of wzyx at the specified place without knowledge of the value of r. As a result, the question cannot be answered using the information given.

learn more about location here :

https://brainly.com/question/14134437

#SPJ11

In this question, you are asked to find estimates of the definite integral foces (1+x+x²)-¹dx by the Trapezoidal Rule and Simpson's Rule, each with 4 subintervals. 8.1 (1 mark) Firstly, in the top r

Answers

The estimate of the definite integral using Simpson's Rule with 4 subintervals is 3.

What is integral?

The value obtained after integrating or adding the terms of a function that is divided into an infinite number of terms is generally referred to as an integral value.

To estimate the definite integral of f(x) = (1 + x + x²)⁻¹dx using the Trapezoidal Rule and Simpson's Rule with 4 subintervals, we need to divide the interval [a, b] into 4 equal subintervals and calculate the corresponding estimates.

The Trapezoidal Rule estimates the definite integral by approximating the area under the curve with trapezoids. The formula for the Trapezoidal Rule with n subintervals is:

∫[a to b] f(x)dx ≈ (h/2) * [f(a) + 2*f(x1) + 2*f(x2) + ... + 2*f(xn-1) + f(b)]

where h is the width of each subinterval, h = (b - a)/n, and xi represents the endpoints of each subinterval.

Similarly, Simpson's Rule estimates the definite integral using quadratic approximations. The formula for Simpson's Rule with n subintervals is:

∫[a to b] f(x)dx ≈ (h/3) * [f(a) + 4*f(x1) + 2*f(x2) + 4*f(x3) + ... + 2*f(xn-2) + 4*f(xn-1) + f(b)]

where h is the width of each subinterval, h = (b - a)/n, and xi represents the endpoints of each subinterval.

Since we are using 4 subintervals, we have n = 4 and h = (b - a)/4.

Let's calculate the estimates using both methods:

Trapezoidal Rule:

h = (b - a)/4 = (1 - 0)/4 = 1/4

Using the formula, we have:

∫[0 to 1] (1 + x + x²)⁻¹dx ≈ (1/4) * [(1 + 2*(1/4) + 2*(2/4) + 2*(3/4) + 1)]

                             = (1/4) * (1 + 1/2 + 1 + 3/2 + 1)

                             = (1/4) * (7/2)

                             = 7/8

Therefore, the estimate of the definite integral using the Trapezoidal Rule with 4 subintervals is 7/8.

Simpson's Rule:

h = (b - a)/4 = (1 - 0)/4 = 1/4

Using the formula, we have:

∫[0 to 1] (1 + x + x²)⁻¹dx ≈ (1/4) * [(1 + 4*(1/4) + 2*(1/4) + 4*(2/4) + 2*(3/4) + 4*(3/4) + 1)]

                           = (1/4) * (1 + 1 + 1/2 + 2 + 3/2 + 3 + 1)

                           = (1/4) * (12)

                           = 3

Therefore, the estimate of the definite integral using Simpson's Rule with 4 subintervals is 3.

To learn more about the integral visit:

brainly.com/question/30094386

#SPJ4

preliminary study testing a simple random sample of 132 clients, 19 of them were discovered to have changed their vacation plans. use the results of the preliminary study (rounded to 2 decimal places) to estimate the sample size needed so that a 95% confidence interval for the proportion of customers who change their plans will have a margin of error of 0.12.

Answers

A sample size of at least 34 consumers is necessary to generate a 95% confidence interval for the percentage of customers who alter their plans with a margin of error of 0.12.

To estimate the sample size needed for a 95% confidence interval with a margin of error of 0.12, we can use the formula:

n = (Z^2 * p* q) / E^2

Where:

n = required sample size

Z = Z-score corresponding to the desired confidence level (95% confidence level corresponds to a Z-score of approximately 1.96)

p = proportion of clients who changed their vacation plans in the preliminary study (19/132 ≈ 0.144)

q = complement of p (1 - p)

E = desired margin of error (0.12)

Plugging in the values, we can calculate the required sample size:

n = [tex](1.96^2 * 0.144 * (1 - 0.144)) / 0.12^2[/tex]

n ≈ (3.8416 * 0.144 * 0.856) / 0.0144

n ≈ 0.4899 / 0.0144

n ≈ 33.89

Rounding up to the nearest whole number, the estimated sample size needed is approximately 34.

Therefore, to obtain a 95% confidence interval for the proportion of customers who change their plans with a margin of error of 0.12, a sample size of at least 34 clients is required.

To know more about confidence interval refer here:

https://brainly.com/question/32546207?#

#SPJ11

this one is for 68,69
this one is for 72,73
this one is for 89,90,91,92
Using sigma notation, write the following expressions as infinite series.
68. 1 1+1 − 1 + ··· - 69. 1 -/+-+...
Compute the first four partial sums S₁,..., S4 for the series having nth term an

Answers

The expression 1 + 1 - 1 + ... is represented by the series ∑((-1)^(n-1)), with the first four partial sums being S₁ = 1, S₂ = 0, S₃ = 1, and S₄ = 0.

The expression 1 -/+-+... is represented by the series ∑((-1)^n)/n, and the first four partial sums need to be computed separately.

The expression 1 + 1 - 1 + ... can be written as an infinite series using sigma notation as:

∑((-1)^(n-1)), n = 1 to infinity

The expression 1 -/+-+... can be written as an infinite series using sigma notation as:

∑((-1)^n)/n, n = 1 to infinity

To compute the first four partial sums (S₁, S₂, S₃, S₄) for a series with nth term an, we substitute the values of n into the series expression and add up the terms up to that value of n.

For example, let's calculate the first four partial sums for the series with nth term an = ((-1)^(n-1)):

S₁ = ∑((-1)^(n-1)), n = 1 to 1

= (-1)^(1-1)

= 1

S₂ = ∑((-1)^(n-1)), n = 1 to 2

= (-1)^(1-1) + (-1)^(2-1)

= 1 - 1

= 0

S₃ = ∑((-1)^(n-1)), n = 1 to 3

= (-1)^(1-1) + (-1)^(2-1) + (-1)^(3-1)

= 1 - 1 + 1

= 1

S₄ = ∑((-1)^(n-1)), n = 1 to 4

= (-1)^(1-1) + (-1)^(2-1) + (-1)^(3-1) + (-1)^(4-1)

= 1 - 1 + 1 - 1

= 0

Therefore, the first four partial sums for the series 1 + 1 - 1 + ... are S₁ = 1, S₂ = 0, S₃ = 1, S₄ = 0.

Similarly, we can compute the first four partial sums for the series 1 -/+-+... with the nth term an = ((-1)^n)/n.

To learn more about partial sums visit : https://brainly.com/question/31383244

#SPJ11

T
in time for minutes for lunch service at the counter has a PDF of
W(T)=0.01474(T+0.17)^-4
what is the probability a customer will wait 3 to 5 minutes
for counter service ?

Answers

The probability is equal to the integral of W(T) from 3 to 5.

To calculate the probability that a customer will wait 3 to 5 minutes for counter service, we use the given probability density function (PDF) W(T) = 0.01474(T+0.17)^-4.

Integrating this PDF over the interval [3, 5], we find the probability P. The integral is evaluated by applying integration techniques to obtain an expression in terms of T.

Finally, substituting the limits of integration, we calculate the approximate value of P. This probability represents the likelihood that a customer will experience a waiting time between 3 and 5 minutes.

The value obtained reflects the cumulative effect of the PDF over the specified interval and provides a measure of the desired probability.

Learn more about probability :

https://brainly.com/question/31828911

#SPJ11

Determine whether the vector v = (2,7,13) is a linear combination of the vectors, (1,2,3), 12 = (-1,2,1) and us=(1,6,10). Show all the details of your solution.

Answers

The vector v = (2,7,13) is not a linear combination of the vectors (1,2,3), 12 = (-1,2,1), and us = (1,6,10).

To determine if v is a linear combination of the given vectors, we need to check if there exist scalars x, y, and z such that v = x(1,2,3) + y(-1,2,1) + z(1,6,10). This equation can be written as a system of linear equations:

2 = x - y + z

7 = 2x + 2y + 6z

13 = 3x + y + 10z

Solving this system of equations, we find that it has no solution. Therefore, v cannot be expressed as a linear combination of the given vectors. Thus, v = (2,7,13) is not a linear combination of (1,2,3), 12 = (-1,2,1), and us = (1,6,10).

Learn more about linear combination here:

https://brainly.com/question/30341410

#SPJ11

Which of the following functions is a solution to the differential equation y' - 3y = 6x +4? Select the correct answer below: Oy=2e³x-2x-2 Oy=x² y = 6x +4 Oy=e²x -3x+1

Answers

The only function that is a solution to the differential equation y' - 3y = 6x + 4 is y = 2e³x - 2x - 2

To determine which of the given functions is a solution to the differential equation y' - 3y = 6x + 4, we can differentiate each function and substitute it into the differential equation to check for equality.

Let's evaluate each option:

1) y = 2e³x - 2x - 2

Taking the derivative of y with respect to x:

y' = 6e³x - 2

Substituting y and y' into the differential equation:

y' - 3y = (6e³x - 2) - 3(2e³x - 2x - 2)

        = 6e³x - 2 - 6e³x + 6x + 6

        = 6x + 4

The left side of the differential equation is equal to the right side (6x + 4), so y = 2e³x - 2x - 2 is a solution to the differential equation.

2) y = x²

Taking the derivative of y with respect to x:

y' = 2x

Substituting y and y' into the differential equation:

y' - 3y = 2x - 3(x²)

        = 2x - 3x²

The left side of the differential equation is not equal to the right side (6x + 4), so y = x² is not a solution to the differential equation.

3) y = 6x + 4

Taking the derivative of y with respect to x:

y' = 6

Substituting y and y' into the differential equation:

y' - 3y = 6 - 3(6x + 4)

        = 6 - 18x - 12

        = -18x - 6

The left side of the differential equation is not equal to the right side (6x + 4), so y = 6x + 4 is not a solution to the differential equation.

4) y = e²x - 3x + 1

Taking the derivative of y with respect to x:

y' = 2e²x - 3

Substituting y and y' into the differential equation:

y' - 3y = (2e²x - 3) - 3(e²x - 3x + 1)

        = 2e²x - 3 - 3e²x + 9x - 3

        = 9x - 6

The left side of the differential equation is not equal to the right side (6x + 4), so y = e²x - 3x + 1 is not a solution to the differential equation.

To know more about differential equation refer here:

https://brainly.com/question/25731911#

#SPJ11

Consider the function g defined by g(x, y) = cos (πI√y) + 1 log3(x - y) Do as indicated. 2. Calculate the instantaneous rate of change of g at the point (4, 1, 2) in the direction of the vector v = (1,2).

Answers

The instantaneous rate of change of g at the point (4, 1, 2) in the direction of the vector v = (1, 2) is -1/(√5) + 1/(3ln(3)√5).

To calculate the instantaneous rate of change of the function g(x, y) at the point (4, 1, 2) in the direction of the vector v = (1, 2), we need to find the directional derivative of g in that direction.

The directional derivative of a function f(x, y) in the direction of a vector v = (a, b) is given by the dot product of the gradient of f with the unit vector in the direction of v:

D_v(f) = ∇f · (u_v)

where ∇f is the gradient of f and u_v is the unit vector in the direction of v.

Let's calculate the gradient of g(x, y):

∇g = (∂g/∂x, ∂g/∂y)

Taking partial derivatives of g(x, y) with respect to x and y:

∂g/∂x = (∂/∂x)(cos(πI√y)) + (∂/∂x)(1 log3(x - y))

= 0 + 1/(x - y) log3(e)

∂g/∂y = (∂/∂y)(cos(πI√y)) + (∂/∂y)(1 log3(x - y))

= -πI sin(πI√y) + 0

The gradient of g(x, y) is:

∇g = (1/(x - y) log3(e), -πI sin(πI√y))

Now, let's calculate the unit vector u_v in the direction of v = (1, 2):

||v|| = sqrt(1^2 + 2^2) = sqrt(5)

u_v = v / ||v|| = (1/sqrt(5), 2/sqrt(5))

Next, we calculate the dot product of ∇g and u_v:

∇g · u_v = (1/(x - y) log3(e), -πI sin(πI√y)) · (1/sqrt(5), 2/sqrt(5))

     = (1/(x - y) log3(e))(1/sqrt(5)) + (-πI sin(πI√y))(2/sqrt(5))

Finally, substitute the given point (4, 1, 2) into the expression and calculate the instantaneous rate of change of g in the direction of v:

D_v(g) = ∇g · u_v evaluated at (x, y) = (4, 1, 2)

Please note that the value of πI√y depends on the value of y. Without knowing the exact value of y, it is not possible to calculate the precise instantaneous rate of change of g in the direction of v.

To know more Vectors refer here-

https://brainly.com/question/13322477#

#SPJ11

Other Questions
Fitness trade-off refers to selection favoring which genotype? a. heterozygous b. no genotype is favored c. homozygous recessive d. homozygous dominant. buck and the other dogs are sold in this section mainly because . a they are getting too old to pull heavy sleds b they are exhausted from overwork and are considered worthless c they are considered too wild and misbehaved to do mail runs d they are worth a lot of money and perrault receives a great offer Find the degrees of freedom, alpha or significance level, and the t-critical value using the t-table n = 27 ;CL=98\% A manager at a local bank analyzed the relationship between monthly salary (in $) and length of service measured in months) for 30 employees. The following ANOVA table summarizes a portion of the regression results. Regression Statistics Multiple R 0.8828623 R Square 0.7794458 Adjusted R Square 0.7712772 Standard Error 143.42633 Observations 29 ANOVA df F 95.41891 Regression Residual Total 1 27 28 SS MS 1962873 1962873 555420 20571.111 2518293 Intercept Service Coefficients Standard Error t Stat P-value 784.92 322.25 2.4357486 0.0217411 9.19 4.2 2.1880952 0.0374934 the rule of liability of accountants for negligence to third parties that is most favorable to the accountant is The Great Pyramid of King Khufu was built of limestone in Egypt over a 20-year time period from 2580 BC to 2550 BC. Its base is a square with side length 755 ft and its height when built was 481 ft. (It was the talle 3800 years) The density of the limestone is about 150/. (4) Estimate the total work done in building the pyramid. (Round your answer to three decimal places) 202-b (b) If each laborer worked 10 hours a day for 20 years, for 30 days a year and did 200 m-lb/h of work in lifting the limestone blocks into place, about how many taborars were needed to construct the pyrami taborars stone in Egypt over a 20-year time period from 2580 BC to 2560 BC. Its base is a square with side length 736 it and its height when built was 481 ft. (It was the tallest manmade structure in the world for more than = 150 m g the pyramid. (Round your answer to three decimal places) for 20 years, for 340 days a year and did 200 ft- of work in trong the limestone blocks into place, about how many laborers were needed to construct the pyramid? How can a marketer overcome the negative effects of commoditization?A) convince target consumers that the firm's products are as good as those of competitorsB) convince target consumers that price is irrelevant in determining qualityC) convince target consumers that the firm's products are different from those of competitorsD) convince target customers that buying the highest-priced product is no guarantee of qualityE) convince target customers that all the products in the market are equivalent Find any points of intersection of the graphs of the equations algebraically and then verify using a graphing utility.x2 y2 12x + 6y 9 = 0x2 + y2 12x 6y + 9 = 0smaller value (x,y) =larger value (x,y) = Find f if grad f = (2yze+92 + 5z.cos(x2?))i + 2xzetya + (2xye+y+ + 10xz cos(xz))a. f(x, y, z) | 2 x y exyz +C SF Use the Fundamental Theorem of Line Integrals to calculate F. dr where F = e. Which type of computers comes in briefcase style Identify the points (x, y) on the unit circle that corresponds to the real number b) (0, 1) help me learnthank youLet r(t) = Find a parametric equation of the line tangent to r(t) at the point (3, 4, 2.079) x(t) = 3 + 3t y(t) = z(t) =The curves F1 (t) = (-3t, t, 2t) and r2(t) = (sin(-2t), sin (4t), t - ) i Determine whether the point lies on the graph of the function. p(-5, - 31); f(t) = It + 11 +3 + 1 lies on the graph of the function. o pl-5, -1) o pl-5, - 31) does not lie on the graph of the function In the Hip Hop & Shakespeare video, why does the speaker in the video, Akala, compare hip hop lyrics and Shakespeare quotes? Explain why it was challenging for the audience to decide if the quotes were from hip hop or Shakespeare. Write a response of 3-5 sentences and use evidence from Akala's speech to support your answer. how managers plan significant investments in projects that have long term implications such as purchasing new equipment or introducing new products is called . (enter only one word per blank.) (5 points) Find the area of the surface generated by revolving the given curve about the y-axis. 4-y?, -1 standard or requirement for a technical specialty phlebotomy In the chi-square test for goodness of fit for a categorical variable, the values in the null hypothesis a.can sometimes sum to 0 b. must sum to 1c. can sometimes sum to 0d. must sum to 0 e. can sum to any positive value Evaluate Question 1 Not yet answered I= S. (2.42 +3. +3. 2) dx + (4.2 - y) dy Marked out of 5.00 in the c, y) plane from (0,0) to (1,4) where: P Flag question (a) C is the curvey = 4.23. I (b) C is th R is the region bounded by the functions f(x) = -6x2 6x + 4 and g(x) = -8. Find the area A of R. Enter answer using exact values Steam Workshop Downloader