The Volume of Trapezoidal prism is 420 cm².
From the given figure we can write the dimension of the prism as
a = 5, b=15, c= 15, d= 15
h= 7 and l = 6 cm
Now, Volume of Trapezoidal prism
= 1/2 (a+b) x h x l
= 1/2 (5+15) x 7 x 6
= 1/2 x 20 x 42
= 10 x 42
= 420 cm²
Thus, the Volume of Trapezoidal prism is 420 cm².
Learn more about Volume here:
https://brainly.com/question/28058531
#SPJ1
Show your work show me how you got the answer HELP DUE TOMORROW!!
This number pattern -1:5 ;x; 35 ; ...
Is a quadratic number pattern.
a) Calculate x
b) Hence, or otherwise, determine the nth term of the sequence.
This sequence 4;9; x; 37; .... is a quadratic sequence.
a) Calculate x
b) Hence, or otherwise, determine the nth term of the sequence.
Answer:
x = 17; an = 3n² -3n -1x = 20; an = 3n² -4n +5Step-by-step explanation:
Given the following quadratic sequences, you want the value of x and the expression for the n-th term.
-1, 5, x, 354, 9, x, 37DifferencesOne way to determine x is to look at the differences between terms. The "second difference" is constant for a quadratic sequence, and the third difference is zero.
N-th termThe quadratic equation for the n-th term can be found by solving for its coefficients. The three known values of the sequence can give rise to three linear equations in the three unknown coefficients. These can be solved by your favorite method. We use this approach in the following.
1. -1, 5, x, 35First differences are the differences between each term and the one before:
{6, x-5, 35-x}
Second differences are the differences of these:
{x -11, 40 -2x}
Third differences are zero:
51 -3x = 0 ⇒ x = 17
The value of x is 17.
The expression for the n-th term of the sequence can be written as ...
an = a·n² +b·n +c
We are given values of a1, a2, and a4. This lets us write 3 equations for a, b, and c. The solution of those is shown on the first line of the first attachment. (The second line shows the evaluation of this quadratic equation for n=3. It gives 17, which we already knew.)
an = 3n² -3n -1
2. 4, 9, x, 37The last line of the first attachment shows us the expression for the third differences. The value of that is zero, so ...
-3x +60 = 0 ⇒ x = 20
The value of x is 20.
As in the above problem, the matrix of equations for the quadratic coefficients can be reduced to give the coefficient values. That tells us the n-th term of this sequence is ...
an = 3n² -4n +5
The last line in the second attachment tells us this expression for the n-th term properly computes the 3rd term (x), as above.
__
Additional comments
You can also use quadratic regression to find the coefficients of the formula for the quadratic sequence. This is shown in the 3rd attachment.
If you're trying to avoid using a calculator, you can write the equations out and solve them in an ad hoc way. In case you cannot tell, the equations for the coefficients of an = a·n² +b·n +c for the first problem are ...
1·a +1·b +1·c = -14·a +2·b +1·c = 516·a +4·b +c = 35You can also use the first values of the sequence (p), first difference (q), second difference (r) to write the quadratic:
an = p +(n -1)(q +(n -2)/2(r))
For (p, q, r) = (-1, 6, 6), this is an = -1 +(n -1)(3n) . . . . . . for the first sequence.
<95141404393>
Determine the amplitude of function
The amplitudes of functions are a) 8 and b) 6.
Given are the functions we need to determine the amplitude of function,
a) y = 8 Sin (x/2) + 3
b) y = 6 Cos x + 2
So,
To determine the amplitude of a trigonometric function, you can follow these steps:
For a sine function of the form y = A×sin(Bx + C) + D:
The amplitude is equal to the absolute value of the coefficient A.
For a cosine function of the form y = A×cos(Bx + C) + D:
The amplitude is equal to the absolute value of the coefficient A.
Let's apply these steps to the given functions:
a) y = 8×sin(x/2) + 3
The coefficient of sin in this function is 8, so the amplitude is |8| = 8.
Therefore, the amplitude of function a) is 8.
b) y = 6×cos(x) + 2
The coefficient of cos in this function is 6, so the amplitude is |6| = 6.
Therefore, the amplitude of function b) is 6.
Hence the amplitudes of functions are a) 8 and b) 6.
Learn more about amplitude click;
https://brainly.com/question/9525052
#SPJ1
O is the center of the regular octagon below. Find its perimeter. Round to the nearest tenth if necessary.
The correct answer is 86.08, as the octagon is given and the apothem given here is 13 units. The calculation after putting the value in formula is 86.08.
An octagon is a polygon with eight sides and eight angles. It is a two-dimensional geometric shape. Each angle in a regular octagon measures 135 degrees, and all sides of a regular octagon are of equal length.
The formula is given below,
P= side length ×n
Apothem of octagon =13 units,
side length is = tan (360° / (2 × 8)) = (n/2) ÷ 13
= tan (360° / (2 × 8)) = n/26
tan 22.5°= n/26
n/26 = 0.4142
n = 10.76
perimeter of octagon = 8 × 10.76 = 86.08
Learn more about the octagon calculation here
https://brainly.com/question/17004222
#SPJ1
4 - 32 x (-0.25)-12/ 1/3
Answer:
8x is your answer.
Step-by-step explanation:
The photo shows how it's solved.
Name two other positive angles of rotation that take A to B. Explain your reasoning
The two other positive angles of rotation that take Point A to Point B on the unit circle is (5π/6) and (5π/6) + 2π .
Given data ,
To find two other positive angles of rotation that take Point A to Point B, we need to consider the angle values that yield the same coordinates as (1, 0) after rotating counterclockwise.
The position of Point A is (1, 0) on the unit circle.
Now, let's find the coordinates of Point B after rotating (7π/6) radians counterclockwise.
To rotate counterclockwise by (7π/6) radians, we can subtract (7π/6) from the angle of Point A. So, the angle for Point B would be:
Angle of Point B = 0 - (7π/6) = - (7π/6)
Now , for positive angles of rotation, we can add multiples of 2π to the angle of Point B while keeping the same coordinates. Adding 2π to the angle gives us:
Angle of Point B = - (7π/6) + 2π = (5π/6)
Hence , two other positive angles of rotation that take Point A to Point B are (5π/6) and (5π/6) + 2π. Both of these angles yield the same coordinates as Point B, which is (1, 0) on the unit circle.
To learn more about rotation click :
https://brainly.com/question/3956347
#SPJ1
When purchasing bulk orders of batteries, a toy manufacturer uses this acceptance sampling plan: Randomly select and test 40 batteries and determine whether each is within specifications. The entire shipment is accepted if at most 3 batteries do not meet specifications. A shipment contains 4000 batteries, and 3% of them do not meet specifications. What is the probability that this whole shipment will be accepted? Will almost all such shipments be accepted, or will many be rejected?
The probability of accepting the whole shipment is 0.9093. Therefore, almost all such shipments will be accepted.
What is the probability that this whole shipment will be accepted?The probability that the whole shipment will be accepted is calculated as follows;
First, we calculate the probability of having at most 3 batteries that do not meet specifications out of the 40 randomly tested batteries.
Assuming:
p = probability that a single battery does not meet specifications = 0.03q = probability that a single battery meets specifications = 1 - p = 0.97n = number of batteries tested = 40k = number of batteries that do not meet specifications (at most) = 3We can use the binomial probability formula to calculate the probability:
[tex]P(X \leq k) = \sum (from\: i = 0 \:to\: k) [(nCi) * p^{i} * q^{(n-i)}][/tex]
P(X ≤ 3) = [(⁴⁰C₀) * (0.03⁰) * (0.97⁴⁰] + [(⁴⁰C₁) * (0.03¹) * (0.97³⁹)] + [(⁴⁰C₂) * (0.03²) * (0.97³⁸)] + [(⁴⁰C₃) * (0.03³) * (0.97³)]
P(X ≤ 3) = 0.9093.
Learn more about probability at: https://brainly.com/question/24756209
#SPJ1
A stainless steel patio heater is a square pyramid. the length of one of the base is 23.8. The slant height of the pyramid is 89.3 in. What is the height of the pyramid?
To find the height of the square pyramid, we can use the Pythagorean theorem. The slant height of the pyramid (s) is the hypotenuse of a right triangle formed by the height (h), half the length of the base (b/2), and the slant height.
Using the Pythagorean theorem:
s^2 = (b/2)^2 + h^2
We are given that the length of one of the base sides (b) is 23.8 and the slant height (s) is 89.3.
Plugging in the values:
89.3^2 = (23.8/2)^2 + h^2
Simplifying:
h^2 = 89.3^2 - (23.8/2)^2
h^2 = 7950.49 - 141.64
h^2 = 7808.85
Taking the square root of both sides:
h = √7808.85
h ≈ 88.37
Therefore, the height of the square pyramid is approximately 88.37 inches.[tex]\huge{\mathcal{\colorbox{black}{\textcolor{lime}{\textsf{I hope this helps !}}}}}[/tex]
♥️ [tex]\large{\textcolor{red}{\underline{\texttt{SUMIT ROY (:}}}}[/tex]
4
(1 pa
10. The table shows the results from home games for a specific team during the season leading up
to the World Series. The team's home field has a roof that can be closed for weather. If it is
closed, the fans could make more noise for the home team and possibly give them an
advantage. Find the test statistic needed to test independence for the contingency table.
Closed roof
Open roof
034.215
00.093
00.798
03.841
Win
36
15
Loss
17
11
The test statistic χ² is approximately 1.47.
We have,
To test independence for the contingency table, we need to calculate the test statistic.
The most commonly used test statistic for testing independence in a 2x2 contingency table is the chi-square test statistic.
The chi-square test statistic (χ²) is calculated using the formula:
χ² = Σ [(Observed - Expected)² / Expected]
Where:
Σ represents the sum over all cells of the contingency table.
Observed is the observed frequency in each cell.
Expected is the expected frequency in each cell if the variables were independent.
First, we calculate the expected frequencies for each cell. To do this, we use the formula:
Expected frequency = (row total x column total) / grand total
Grand total = sum of all frequencies = 36 + 17 + 15 + 11 = 79
Expected frequency for the cell "Closed roof - Win" = (53 * 51) / 79 = 34.49
Expected frequency for the cell "Closed roof - Loss" = (53 * 28) / 79 = 18.51
Expected frequency for the cell "Open roof - Win" = (26 * 51) / 79 = 16.51
Expected frequency for the cell "Open roof - Loss" = (26 * 28) / 79 = 9.49
Now, we can calculate the test statistic using the formula:
χ² = [(36 - 34.49)² / 34.49] + [(17 - 18.51)² / 18.51] + [(15 - 16.51)² / 16.51] + [(11 - 9.49)² / 9.49]
Calculating each term and summing them up:
χ² ≈ 0.058 + 0.482 + 0.58 + 0.35 ≈ 1.47
Therefore,
The test statistic χ² is approximately 1.47.
Learn more about test statistics here:
https://brainly.com/question/14128303
#SPJ1
Question number 13 needs to answered
Final speed after slowing down by 15 miles per hour and reducing the speed by one third is 25 miles per hour.
Let's break down the steps to determine the final speed:
Step 1: Convert the speed from miles per minute to miles per hour.
Since you're driving one and a half miles per minute, we need to convert it to miles per hour. There are 60 minutes in an hour, so we multiply 1.5 by 60 to get 90 miles per hour.
Step 2: Slow down by 15 miles per hour.
Subtract 15 from the initial speed of 90 miles per hour, resulting in 75 miles per hour.
Step 3: Reduce the speed by one third.
To find one third of 75 miles per hour, we divide it by 3, which gives us 25 miles per hour.
Therefore, the final speed after slowing down by 15 miles per hour and reducing the speed by one third is 25 miles per hour.
For more such question on Speed
https://brainly.com/question/553636
#SPJ8
Multiplying polynomials 4n2(n2 + 5n - 8)
Answer:
4n^4 + 20n^3 - 32n^2
Step-by-step explanation:
We have to distribute 4n2 to each term.
4n2 x n2. We can multiply the two n2 together resulting in 4n^4.
Now we do 4n2 x 5n. Here we multiply 4 x 5 which equals 20. Then, we multiply the n2 and n. Which results in n^3. Now we put them together; 20n^3.
Finally, we multiply 4n2 by -8. Since 8 doesn't have any variables, we just multiply the 4 and -8. Which equals to -32, now we just combine -32 and the variable; -32n2.
Now we combine these terms together. Our final answer is, 4n^4 + 20n^3 -32n^2.
^ represents an exponent.
What is the exact length of HG in cms
The given triangle is a right angled triangle, therefore the rules of basic Trigonometry can be used here to find the solution.
Considering angle G, lets find sin 45°[tex]\qquad\displaystyle \tt \dashrightarrow \: \sin(45 \degree) = \frac{opposite \:\: side}{hypotenuse} [/tex]
[ sin 45° = 1/√2 ]
[tex]\qquad\displaystyle \tt \dashrightarrow \: \frac{1}{ \sqrt{2} } = \frac{b}{x} [/tex]
[tex]\qquad\displaystyle \tt \dashrightarrow \: x = b \sqrt{2} \: \: cm[/tex]
So, the side HG is b√2 cm long
Will someone please answer this and show me how you got it
(a) Using Excel, the calculations are shown below:
Mean = 608.67
Median = 610.00
Mode = 610.00
Standard Deviation = 96.89
(b) The measure of central tendency would be appropriate are the median and the mode.
How do we calculate?The median is fitting because it is a representation of the middle value in the data set and is not affected by extreme values.
We can see that our median rent is $610.00 and an appropriate representation of the typical rent paid by the students.
The mode is $610.00 and also an indication that this rent amount is the most common among the students.
In conclusion, a measure of the variability or dispersion in the data set is provided by the standard deviation, which is determined to be 96.89. It demonstrates how widely the rents vary from the mean.
Learn more about mean at:
https://brainly.com/question/1136789
#SPJ1
Triglycerides are a type of fat in the bloodstream. The mean triglyceride level in the United States is 134 milligrams per deciliter. Assume the triglyceride levels of the population of the United States are normally distributed, with a standard deviation of 35 milligrams per deciliter. You randomly select a person from the United States. What is the probability that the person's triglyceride level is less than 80?
The probability that a aimlessly named person's triglyceride position is lower than 80 milligrams per deciliter is roughly0.0618 or6.18.
To calculate the probability that a aimlessly named person's triglyceride position is lower than 80 milligrams per deciliter, we can use the conception of standard normal distribution.
First, we need to regularize the value of 80 using the z- score formula z = ( x- μ)/ σ Where x = 80( the value we want to calculate the probability for) μ = 134( mean triglyceride position) σ = 35( standard divagation) Plugging in the values, we get z = ( 80- 134)/ 35 z = -54/ 35 z ≈-1.543
Next, we need to find the corresponding area under the standard normal distribution wind for a z- score of-1.543. We can use a standard normal distribution table or a calculator to find this area.
Looking up the z- score in the table or using a calculator, we find that the area to the left wing of z = -1.543 is roughly0.0618.
thus, the probability that a aimlessly named person's triglyceride position is lower than 80 milligrams per deciliter is roughly0.0618 or6.18.
For more questions about probability .
https://brainly.com/question/30390037
#SPJ8
A sample of 22 observations selected from a normally distributed population produced a sample variance of 18 . a. To see if the population variance differs from 14 write the null and alternative hypotheses. b. Using �=.05α=.05, find the critical values of �2χ2. Display the chi-square distribution curve's rejection and nonrejection areas. c. Determine the test statistic �2χ2 value. d. Will you reject the null hypothesis presented in component an at a 5% significance level?
The degrees of freedom is 21, the critical values correspond to the points where the chi-square distribution curve separates the rejection and non-rejection areas and chi-square test statistic is 27.
The null and alternative hypotheses can be stated as follows:
Null Hypothesis (H0): The population variance is equal to 14.
Alternative Hypothesis (Ha): The population variance differs from 14.
To find the critical values of χ2 with α = 0.05, we need to determine the degrees of freedom first.
For a sample variance, the degrees of freedom (df) is given by (n - 1), where n is the sample size.
In this case, n = 22, so the degrees of freedom is 21.
Using a chi-square table or statistical software, we can find the critical values for a chi-square distribution with 21 degrees of freedom and α = 0.05.
The critical values correspond to the points where the chi-square distribution curve separates the rejection and non-rejection areas.
To determine the test statistic χ2 value, we need to calculate the chi-square test statistic using the given information.
The chi-square test statistic is calculated as:
χ2 = (n - 1) ×(sample variance) / (population variance)
Plugging in the values, we have:
χ2 = (22 - 1) × 18 / 14
=27
To learn more on Null hypothesis click:
https://brainly.com/question/30821298
#SPJ1
What is the area of the rectangle above?
OA. 96 square units
OB. 20 square units
OC. 104 square units
OD. 40 square units
The area of the rectangle with a length of 12 units and a width of 8 units is 96 sqaure units.
How to determine the area of a rectangle?A rectangle is a 2-dimensional shape with parallel opposite sides equal to each other and four angles are right angles.
The area of a rectangle is expressed as;
Area = length × breadth
From the image:
Length of the rectangle = 12 units
Breadth of the rectangle = 8 units
Area of the rectangle = ?
Plug the given values into the above formula and solve for the area:
Area = length × breadth
Area = 12 units × 8 units
Area = 96 sqaure units
Therefore, the measure of the area is 96 sqaure units.
Option A) 96 sqaure units is the correct answer.
Learn more about area of rectangle here: brainly.com/question/12019874
#SPJ1
Please help me solve this
There is 90% confidence that the population mean number of books people read is between 11.55 and 13.25.
To construct a 90% confidence interval for the mean number of books people read, we can use the following formula:
Confidence Interval = x ± (Z * (s / √n))
Where:
x = sample mean (12.4 books)
s = sample standard deviation (16.6 books)
n = sample size (1017)
Z = Z-score
Since the sample size is large (n > 30), we can assume the sampling distribution is approximately normal.
We can use the standard normal distribution to find the Z-score for a 90% confidence level.
The Z-score for a 90% confidence level is approximately 1.645.
Now we can calculate the confidence interval:
Confidence Interval = 12.4 ± (1.645 (16.6 / √1017))
Confidence Interval ≈ 12.4 ± (1.645 (16.6 / √1017))
Confidence Interval ≈ 12.4 ± (1.645 (16.6 / 31.95))
Confidence Interval ≈ 12.4 ± (1.645 x 0.518)
Confidence Interval ≈ 12.4 ± 0.85
There is 90% confidence that the population mean number of books people read is between 11.55 and 13.25.
Learn more about Confidence interval here:
https://brainly.com/question/13067956
#SPJ1
Complete the proof that HJ LGI.
4
I
5
Statement
K
1
ZHKI ZGKH
2
m2GKH + mZHKI = 180°
3 m2GKH+mZGKH= 180°
mZGKH = 90°
HJ L GI
G
H
Reason
Given
Angles forming a linear pair sum to 180°
Definition of congruence
(
The complete sentence is shown below:
Reason: Given
Reason: Angles forming a linear pair sum to 180° (Given)
Reason: Substitution from Statement 1.
To complete the proof that HJ GI, we can use the given statements and reasons:
Statement 1: <HKI = <GKH
Reason: Given
Statement 2: m<GKH + m<HKI = 180°
Reason: Angles forming a linear pair sum to 180° (Given)
Statement 3: m,GKH + m<GKH = 180°
Reason: Substitution from Statement 1
Statement 4: m<GKH = 90°
Reason: From Statement 2 and Statement 3, we can subtract m<GKH from both sides, which results in m<GKH = 180° - m<GKH.
Since the angles forming a linear pair sum to 180°, m<GKH + m<GKH = 180° implies that m<GKH = 90°.
Therefore, based on the given statements and reasons, we can conclude that HJ and GI are congruent (m<GKH = 90°)
Learn more about Linear Pair here:
https://brainly.com/question/1757859
#SPJ1
Please help. Any unnecessary answers will be reported. Show your work.
King Arthur's Sword has a blade that is made of a regular hexagon and a regular pentagon. What is the amplitude of the tip of King Arthur's Sword?
Answer: Amplitude is 108 degrees
Step-by-step explanation:
To determine the amplitude of the tip of King Arthur's Sword, we need to understand the shape of the sword's blade, which consists of a regular hexagon and a regular pentagon.
A regular hexagon has six equal sides and six equal angles, each measuring 120 degrees. The regular pentagon, on the other hand, has five equal sides and five equal angles, each measuring 108 degrees.
Since the tip of the sword is formed by the meeting point of the hexagon and pentagon, it will be at the apex of the pentagon. The apex of the pentagon will have an angle of 108 degrees.
I hope this helps!!!
The support beams of truss bridges are triangles. James made a model of a truss bridge with a scale of 1 inch = 4 feet. If the height of the tallest triangle on the model is 9 inches, what is the height of the tallest triangle on the actual bridge?
The height of the tallest triangle on the actual bridge is 12 feet.
If James made a model of a truss bridge with a scale of 1 inch = 4 feet, we can use this information to find the height of the tallest triangle on the actual bridge.
Let x be the height of the tallest triangle on the actual bridge. Since the scale of the model is 1 inch = 4 feet, the height of the tallest triangle on the model can be converted to feet by multiplying by 4. Therefore, the height of the tallest triangle on the model is:
9 inches * (1 foot / 12 inches) * 4 = 3 feet
We can use the similarity of triangles to set up a proportion to find x. The corresponding sides of similar triangles are proportional. In this case, the height of the triangle on the model corresponds to the height of the triangle on the actual bridge, and the scale factor from the model to the actual bridge is 1/4 (since 1 inch on the model represents 4 feet on the actual bridge). Therefore, we have:
height of triangle on model / height of triangle on actual bridge = scale factor
3 feet / x = 1/4
Multiplying both sides by x, we have:
3 feet = (1/4) x
Multiplying both sides by 4, we have:
12 feet = x
For such more questions on height
https://brainly.com/question/73194
#SPJ8
This figure represents the net of a square pyramid.
2 m
76
6 m
2 m
The total surface area of the square pyramid is 28 m²
What is an equation?An equation is an expression that is used to show how numbers and variables are related using mathematical operators
Given the square pyramid net:
Area of square base = 2 m * 2 m = 4 m²
Area of each triangle face = (1/2) * 2 m * 6 m = 6 m²
Area of the four triangle face = 4 * 6 m² = 24 m²
Total surface area = 24 m² + 4 m² = 28 m²
The total surface area is 28 m²
Find out more on volume at: https://brainly.com/question/27710307
#SPJ1
100 Points! Geometry question. Photo attached. Please show as much work as possible. Thank you!
Here is your answer!
Answer:
[tex](x - 5)^2 + (y + 2)^2 = 5[/tex]
Step-by-step explanation:
The equation of a circle with a center at (h, k) and radius r is given by:
[tex]\bold{(x - h)^2 + (y - k)^2 = r^2}[/tex]
In this case, the center is at (5, -2) and the point that the circle passes through is (4, 0).
The distance between the center and the point is:
[tex]\sqrt{(5 - 4)^2 + ((-2) - 0)^2} = \sqrt{1 + 4} = \sqrt{5}[/tex]
Therefore, the equation of the circle is:
[tex](x - 5)^2 + (y + 2)^2 = \sqrt{5}^2[/tex]
Simplifying the equation, we get:
[tex]\bold{(x - 5)^2 + (y + 2)^2 = 5}[/tex] is a required equation
Need help solving this problem try to exclude steps if can
The transformed vertices are;
A'' => (-7, -1)
B'' => (-7, 4)
C''=> (-9,4)
D''=> (-9, -1)
Here, we have,
given that,
we have to translate by (x,y) => (x-5, y+4)
so, the rectangle will be transformed as;
the transformed vertices are;
A' => ( 4-5, 3+4) => (-1, 7)
B' => (9-5, 3+4) => (4,7)
C'=>(9 -5, 5 +4 ) => (4, 9)
D'=> (4 -5, 5+4 ) => (-1, 9)
now, For clockwise rotation of a triangle by 90 degree, then x coordinate is similar to the y coordinate of original point and y coordinate is negative times of x coordinate of original point.
So (x,y) changes to (-y,x).
the transformed vertices are;
A'' => ( 4-5, 3+4) => (-1, 7) => (-7, -1)
B'' => (9-5, 3+4) => (4,7) => (-7, 4)
C''=>(9 -5, 5 +4 ) => (4, 9) => (-9,4)
D''=> (4 -5, 5+4 ) => (-1, 9)=> (-9, -1)
To learn more on transformation click:
brainly.com/question/29791450
#SPJ1
In The figure below, what are m<1,m<2,m<3,m<4? Give reasons for each one
The measure of unknown angles,
∠1 = ∠4 = 110 degree
∠2 = ∠3 = 70 degree
Labeling the figure,
Then from figure we have,
⇒ x + 40 + x = 180
⇒ 2x + 40 = 180
Subtract 40 both sides,
⇒ 2x = 140
Divide both sides by 2
⇒ x = 70
From figure,
⇒ ∠1 + 70 = 180
⇒ ∠1 = 180 - 70
⇒ ∠1 = 110 degree
And from figure,
⇒ ∠1 + ∠2 = 180
⇒ 110 + ∠2 = 180
⇒ ∠2 = 70 degree
Since,
∠2 = ∠3 = 70 degree
And ∠1 = ∠4 = 110 degree
To learn more about angle visit:
https://brainly.com/question/98924
#SPJ1
8 minutes before 6=?
Answer:
5:52
Step-by-step explanation:
Answer: 5:52
Step-by-step explanation:
The circle has center O. Its radius is 4 ft, and the central angle a measures 110°. What is the area of the shaded region?
Give the exact answer in terms of it, and be sure to include the correct unit in your answer.
The area of shaded sector is,
⇒ Area of sector = 15.35 feet²
We have to given that,
In circle O,
⇒ Radius = 4 feet
And, the central angle a measures 110°.
Since, We know that;
Area of sector = (θ/360) πr²
Where, θ is central angle and r is radius of circle,
Here., r = 4 and θ = 110°
Substitute the given values, we get;
Area of sector = (θ/360) πr²
Area of sector = (110/360) π (4)²
Area of sector = (0.30) π x 16
Area of sector = 4.89 x 3.14
Area of sector = 15.35 feet²
Thus, The area of shaded sector is,
⇒ Area of sector = 36π units²
Learn more about the circle visit:
brainly.com/question/24810873
#SPJ1
you have two rocks made of the same material the same temperature. The first rock has twice the mass of the second rock. How does the thermal energy of the two rocks comare
The thermal energy of the first rock is twice the Thermal energy of the second rock.
The thermal energy of an object is directly proportional to its mass. Therefore, if the first rock has twice the mass of the second rock, it will also have twice the thermal energy.
Thermal energy is a measure of the internal energy of an object, which includes the kinetic energy of its particles. In this case, since both rocks are made of the same material and are at the same temperature, we can assume that their particles have the same average kinetic energy per particle.
The thermal energy of an object can be calculated using the formula:
Thermal energy = Mass * Specific heat capacity * Change in temperature
Since the specific heat capacity and the change in temperature are the same for both rocks (as they are made of the same material and are at the same temperature), we can simplify the comparison of their thermal energies based on mass alone.
Let's denote the mass of the second rock as "m" (arbitrary unit). Since the first rock has twice the mass, its mass can be represented as "2m".
Therefore, the thermal energy of the first rock is:
Thermal energy of the first rock = (2m) * Specific heat capacity * Change in temperature
And the thermal energy of the second rock is:
Thermal energy of the second rock = m * Specific heat capacity * Change in temperature
Comparing the thermal energies:
Thermal energy of the first rock / Thermal energy of the second rock = (2m) * Specific heat capacity * Change in temperature / (m) * Specific heat capacity * Change in temperature
The specific heat capacity and the change in temperature cancel out, leaving us with:
Thermal energy of the first rock / Thermal energy of the second rock = 2m / m = 2
Therefore, the thermal energy of the first rock is twice the thermal energy of the second rock.
To know more about Thermal energy.
https://brainly.com/question/28944987
#SPJ8
For what value of x is the rational expression below undefined?
x-3
3+x
A. 3
OB. -1
O C. 0
OD. -3
The value of x that makes the rational expression undefined is x = -3.
The rational expression is undefined when the denominator is equal to zero, because division by zero is undefined.
In the given rational expression (x - 3) / (3 + x), we need to find the value of x that makes the denominator (3 + x) equal to zero.
To find this value, we set the denominator equal to zero and solve for x:
3 + x = 0
Subtracting 3 from both sides:
x = -3
Therefore, the value of x that makes the rational expression undefined is x = -3.
for such more question on rational expression
https://brainly.com/question/29061047
#SPJ8
please see the attached
The expression (r-s)(x) is 4x² - x + 5, (r.s)(x) is 4x³ - 20x² and value of (r-s)(-1) is 10.
To find the expression (r-s)(x), we subtract the function s(x) from the function r(x):
(r-s)(x) = r(x) - s(x)
Substituting the given functions, we have:
(r-s)(x) = 4x² - (x-5)
Simplifying further:
(r-s)(x) = 4x² - x + 5
To find the expression (r.s)(x), we multiply the functions r(x) and s(x):
(r.s)(x) = r(x) × s(x)
Substituting the given functions, we have:
(r.s)(x) = (4x²)×(x-5)
Expanding and simplifying:
(r.s)(x) = 4x³ - 20x²
Now, let's evaluate (r-s)(-1) by substituting x = -1 into the expression (r-s)(x):
(r-s)(-1) = 4(-1)² - (-1) + 5
(r-s)(-1) = 4 - (-1) + 5
(r-s)(-1) = 4 + 1 + 5
(r-s)(-1) = 10
Therefore, (r-s)(-1) equals 10.
To learn more on Functions click:
https://brainly.com/question/30721594
#SPJ1
Find x (circle)
(Btw I don’t know if 5.6 is correct so just ignore that)
Answer:
A. 11.2
Step-by-step explanation:
But this has nothing to do with 5.6 × 2. Erase that! Lol.
You have a right triangle here. The only thing to do with the circle is that there are two radii (plural of radius) shown. So they have to be the same measure.
The unmarked "bottom" of the triangle, the short leg, is a radius, so it too, is 8.4.
The hypotenuse of the right triangle, the side on the right, the longest side is 5.6 + 8.4.
The hypotenuse is 14.
Let's do some Pythagorean Theorem.
Leg^2+ leg^2=hypotenuse^2
you know,
a^2 + b^2 = c^2
fill in what we know.
8.4^2 + b^2 = 14^2
simplify.
70.56 + b^2 = 196
subtract 70.56
b^2 = 125.44
squareroot both sides
b = 11.2