1. There are three car manufacturing factories A, B and C, and they are producing the same type
of cars. They are employing 1000, 2000 and 3000 men and producing 10, 15 and 25 cars per
month respectively. Find the labor productivity of each firm and the production of each firm
per year.

Answers

Answer 1
The answer is c substract because the numbers are big

Related Questions

21. Juanita is packing a box that is 18 inches long and 9 inches high. The total volume of the box.1,944 cubic inches. Use the formula V = lwh to find the width of the box. Show your work

Answers

Answer:

The width of the box is 12 inches

Explanations:

The formula for calculating the volume of a rectangular box is expressed as:

[tex]V=\text{lwh}[/tex]

where:

• l is the ,length ,of the box

,

• w is the ,width, of the box

,

• h is the ,height ,of the box

Given the following parameters

• length = 18 inches

,

• heigh = 9 inches

,

• volume = 1,944 cubic inches

Substitute the given parameters into the formula to calculate the width of the box as shown:

[tex]\begin{gathered} 1944=18\times w\times9 \\ 1944=162w \end{gathered}[/tex]

Divide both sides by 162 to have:

[tex]\begin{gathered} 162w=1944 \\ \frac{\cancel{162}w}{\cancel{162}}=\frac{1944}{162} \\ w=12\text{inches} \end{gathered}[/tex]

Hence the width of the box is 12 inches

Determine the common ratio for each of the following geometric series and determine which one(s) have an infinite sum.

I. 4+5+25/4+…
II. -7+7/4-7/9+…
III. 1/2-1+2…
IV. 4- ++...

A. III only
B. II, IV only
C. I, Ill only
D. I, II, IV only

Answers

The correct answer is Option A ( III Only). I . -16 sum cannot be negative, II. Not a G.P, III. Sum = 1/4, and IV. Not a G.P.

Solution:

Given geometric series,

I. 4 +5 +25 /4 ….

The common ratio(r) is (5/1)/(4/1) = 5/4.

S∞ = a / ( 1 - r)

     = 4 / ( 1 - 5/4)

     = 4 / -1/4

S∞ = -16.

Since sum cannot be negative.

II . -7 + 7/3 - 7/9+ ....

  Here common ratio = -7 / (7/3) = -1/3

   but - 7/9 / 7 /3 = 7/9

Here there is no common ratio so this not a G.P.

iii. 1/2 -1 + 2.....

     Common ratio = -1 / (1/2) =  -2

     S∞ =  a / ( 1 - r)

           = 1/2 / (1 -(-2))

     S∞  = 1/4.

iv  4 - 8/5 +16/5.....

   Here there is no common ratio.

   So this is not a G.P.

To learn more about geometric series refer to :

https://brainly.com/question/24643676

#SPJ13

The function f(x) = 40(0.9)^x represents the deer population in a forest x years after it was first studied. What was the deer population when it was first studied?a. 44b.40c. 36d.49

Answers

We are given the function that models a deer population:

[tex]f(x)=40(0.9)^x[/tex]

Where x is the years since the study started. If we want to know the initial population, we want to find the population at x = 0 years.

Thus:

[tex]f(0)=40(0.9)^0=40\cdot1=40[/tex]

The correct answer is option b. 40

One ton (2,000 pounds) is equivalent to 907 kilograms. A baby elephant weighs about 91 kilograms atbirth. Approximately how many pounds (lbs.) is this?A 200 lbs.B 400 lbs.C 600 lbs.D 1,000 lbs.

Answers

Since 2000 pounds = 907 kilograms, use the conversion factor:

[tex]\frac{2000\text{ pounds}}{907\operatorname{kg}}[/tex]

To find out what 91 kg are equal to, measured in pounds:

[tex]91\operatorname{kg}=\frac{2000\text{ pounds}}{907\operatorname{kg}}=\frac{91\cdot2000}{907}\text{ pounds =200.66 pounds}[/tex]

Therefore, a baby elephant weighs about 200 lbs.

I thought of a number. from ²/₇ parts of that number I subtracted 0,4 and got ⅗. The number is: A: ²⁄₇ B: ⅖ C: 3,5D: 4,5

Answers

Note : The use of comma as number separator represent point in this solution

Step 1: Let the number be x, thus, 2/7 parts of the number means

[tex]\frac{2}{7}x[/tex]

Step 2: Subtract 0,4 from 2/7 parts of x

[tex]\frac{2}{7}x-0,4\Rightarrow\frac{2}{7}x-\frac{4}{10}[/tex]

Step 3: Equate the expression above to 3/5

[tex]\frac{2}{7}x-\frac{4}{10}=\frac{3}{5}[/tex]

Step 4: Simplify the equation above

[tex]\begin{gathered} \frac{2}{7}x-\frac{4}{10}=\frac{3}{5} \\ \frac{20x-28}{70}=\frac{3}{5}(\text{cross multiply)} \\ 5(20x-28)=70(3) \\ 100x-140=210 \\ 100x=210+140 \\ 100x=350 \\ \frac{100x}{100}=\frac{350}{100}(\text{Divide both side by 100)} \\ x=3,5 \end{gathered}[/tex]

Hence, the number is 3,5

Option C is correct

Find the sum of the arithmetic series given a1 =2, an =35 an n = 12

Answers

Given:

[tex]a_1=2,a_n=35,n=12[/tex]

Required:

Find the sum of the arithmetic series.

Explanation:

The sum of the arithmetic series when the first and the last term is given by the formula.

[tex]S_n=\frac{n}{2}(a_1+a_n)[/tex]

Substitute the given values in the formula.

[tex]\begin{gathered} S_n=\frac{12}{2}(2+35) \\ =6(37) \\ =222 \end{gathered}[/tex]

Final Answer:

Option D is the correct answer.

Which of these would not produce a representative sample that determines the favoritesport of the students at the local high school?ask every tenth student from a list of names in the student directoryask every tenth student who arrives at school on Wednesdayask ten students wearing football jerseys each day for a weekask five students from each classroom chosen by picking numbersMy Progress >

Answers

Answer: ask ten students wearing football jerseys each day for a week

This sample wouldn't b representative because, the use of a footblla

Write the decimal as a quotient of two integers in reduced form.
0.513

Answers

The given decimal can be written as a quotient of 513/1000.

What is quotient?

In maths, the result of dividing a number by any divisor is known as the quotient. It refers to how many times the dividend contains the divisor. The statement of division, which identifies the dividend, quotient, and divisor, is shown in the accompanying figure. The dividend 12 contains the divisor 2 six times. The quotient is always less than the dividend, whether it is larger or smaller than the divisor.

we can write the decimal given 0.513 as a answer of of 513 divided by 1000.

I.e.

[tex]0.513 = \frac{513}{1000}[/tex]

To know more about quotient, go to link

https://brainly.com/question/11418015

#SPJ13

The following distribution represents the number of credit cards that customers of a bank have. Find the mean number of credit cards.Number of cards X01234Probability P(X)0.140.40.210.160.09

Answers

To solve this problem we have a formula at hand: the mean (m) number of credits cards is

[tex]m=\sum ^{}_XX\cdot P(X)[/tex]

Then,

[tex]m=0\cdot0.14+1\cdot0.4+2\cdot0.21+3\cdot0.16+4\cdot0.09=1.66[/tex]

hannah paid 15.79 for a dress that was originally marked 24.99 what js the percent of discount

Answers

The percentage of discount is 37%

Here, we want to calculate the percentage of discount

The first thing we need to do here is to calculate the discount amount

Mathematically, we have this as;

[tex]24.99-15.79\text{ = 9.2}[/tex]

Now, we find the percentage of 24.99 is this discount

We have this as;

[tex]\frac{9.2}{24.99}\text{ }\times100\text{ \% = 36.8\%}[/tex]

The percentage of discount is approximately 37%

What is the average rate of change from g(1) to g(3)?Type the numerical value for your answer as a whole number, decimal or fractionMake sure answers are completely simplified

Answers

The average rate of change from g(1) to g(3)

[tex]\frac{g(x)_3-g(x)_1}{X_3-X_1}_{}[/tex]

where

[tex]g(x)_3=-20,g(x)_1=-8,x_3=3,x_1=\text{ 1}[/tex][tex]\begin{gathered} =\frac{-20\text{ --8}}{3-1}\text{ = }\frac{-20\text{ +8}}{2} \\ =\frac{-12}{2} \\ -6 \end{gathered}[/tex]

Hence the average rate of change is -6

i need help, plotting the ordered pair (0, 0.5) and I need to state in which quadrant or on which axis the point lies.

Answers

The ordered pair:

[tex](x,y)=(0,0.5)[/tex]

it is located at:

Since the point lies on the y-axis it doesn't not lie in any quadrant

Raphael has an odd-shaped field shown in Figure 13-2. He wants to put a four-strand barbed wire fence around it for his cattle.A. What is the perimeter of the field?b. How many 80-rod rolls of barbed wire does he need topurchase?c. How many acres will be fenced?

Answers

Answer: Total perimeter = 9, 962.01 feet

The figure is a composite structure

It contains a rectangle and triangle

The perimeter of a rectangle is given as

Perimeter = 2( length + width)

length of the rectangle = 1500ft

Width of the rectangle = 1390 ft

Perimeter = 2( 1500 + 1390)

Perimeter = 2(2890)

Perimeter = 5780 ft

To calculate the perimeter of a triangle

[tex]\begin{gathered} \text{Perimeter = a + b + }\sqrt[]{a^2+b^2} \\ a\text{ = 1050ft and b = 1390 ft} \\ \text{Perimeter = 1050 + 1390 + }\sqrt[]{1050^2+1390^2} \\ \text{Perimeter = 2440 + }\sqrt[]{1,102,\text{ 500 + 1, 932, 100}} \\ \text{Perimeter = 2400 + }\sqrt[]{3,034,600} \\ \text{Perimeter = 2440 + 1,742,01} \\ \text{Perimeter = }4182.01\text{ f}eet \end{gathered}[/tex]

The total perimeter of the field = Perimeter of the rectangle + perimeter of the right triangle

Total perimeter = 5780 + 4182.01

Total perimeter = 9, 962.01 feet

name the three congruent parts shown by the marks on each drawing

Answers

In this case the aswer is very simple. .

The congruent parts are the equal parts in the 2 triangles.

Therefore, the congruent parts would be:

1. side AB and side XY

2. ∠ A and ∠ X

3. side AC and side XZ

That is the solution. .

“Use the properties to rewrite this expression with the fewest terms possible:3+7(x - y) + 2x - 5y”

Answers

[tex]-5y+2x+7(x-y)+3[/tex]

Expanding 7(x - y) in the above expression gives

[tex]-5y^{}+2x+7x-7y+3[/tex]

adding the like terms (2x+ 7x) and (-5y-7y) gives

[tex](-5y-7y)+(2x+7x)+3[/tex][tex]\rightarrow\textcolor{#FF7968}{-12y+8x+3.}[/tex]

The last expression is the simplest form we can convert our expression into.

Let f(x) = 2x-1 and g(x) = x2 - 1. Find (f o g)(-7).

Answers

Answer: (f o g)(-7) = 95

Step by step solution:

We have the two functions:

[tex]\begin{gathered} f(x)=2x-1 \\ g(x)=x^2-1 \end{gathered}[/tex]

We need to find (f o g)(-7) or f(g(-7)), first we evaluate g(-7):

[tex](f\circ g)(-7)=f(g(-7))[/tex][tex]g(-7)=-7^2-1=49-1=48[/tex]

Now we evaluate f(48):

[tex]f(48)=2\cdot48-1=96-1=95[/tex]

Given the conversion factor which cube has the larger surface area?

Answers

Given the surface area of a cube as

[tex]\begin{gathered} SA=6l^2 \\ \text{where l is the length} \end{gathered}[/tex]

Given Cubes A and B

[tex]\begin{gathered} \text{Cube A} \\ l=19.5ft \end{gathered}[/tex][tex]\begin{gathered} \text{Cube B } \\ l=6m\text{ } \\ \text{ in ft}\Rightarrow\text{ 1m =3.28ft} \\ l=6\times3.28ft=19.68ft \end{gathered}[/tex]

Find the surface area of the cubes and compare them to know which one is larger

[tex]\begin{gathered} \text{Cube A} \\ SA=6\times19.5^2=6\times380.25=2281.5ft^2 \end{gathered}[/tex][tex]\begin{gathered} \text{Cube B} \\ SA=6\times19.68^2=6\times387.3024=2323.8144ft^2 \end{gathered}[/tex]

Hence, from the surface area gotten above, Cube B has a larger surface area than Cube A

Pour subtracted from the product of 10 and a number is at most-20,

Answers

we have

four subtracted from the product of 10 and a number is at most-20

Let

n ----> the number

so

[tex]10n-4\leq-20[/tex]

solve for n

[tex]\begin{gathered} 10n\leq-20+4 \\ 10n\leq-16 \\ n\leq-1.6 \end{gathered}[/tex]

the solution for n is the interval (-infinite, -1.6]

All real numbers less than or equal to negative 1.6

An airplane is taking off at angle of 9 degrees and traveling at a speed of 200 feet per second in relation to the ground. If the clouds begin at an altitude of 4,000 feet, how many seconds will it take for the airplane to be in the clouds?

Answers

ANSWER

[tex]\begin{equation*} 127.85\text{ }seconds \end{equation*}[/tex]

EXPLANATION

First, let us make a sketch of the problem:

To find the time it will take the airplane to be in the clouds, we first have to find the distance flown by the airplane in attaining that height, x.

To do this, apply trigonometric ratios SOHCAHTOA for right triangles:

[tex]\sin9=\frac{4000}{x}[/tex]

Solve for x:

[tex]\begin{gathered} x=\frac{4000}{\sin9} \\ x=25,569.81\text{ }ft \end{gathered}[/tex]

Now, that we have the distance, we can solve for the time by applying the relationship between speed and distance:

[tex]\begin{gathered} speed=\frac{distance}{time} \\ \Rightarrow time=\frac{distance}{speed} \end{gathered}[/tex]

Substitute the given values into the formula above and solve for time:

[tex]\begin{gathered} time=\frac{25569.81}{200} \\ time=127.85\text{ }seconds \end{gathered}[/tex]

That is the number of seconds that it will take.

The data shows the total number of employee medical leave days taken for on-the-job accidents in the first six months of the year: 12, 6, 15, 9, 28, 12. Use the data for the exercise. Find the standard deviation.

Answers

ANSWER:

The standard deviation is 7

STEP-BY-STEP EXPLANATION:

The standard deviation formula is as follows

[tex]\sigma=\sqrt[]{\frac{\sum^N_i(x_i-\mu)^2_{}}{N}}[/tex]

The first thing is to calculate the average of the sample like this:

[tex]\begin{gathered} \mu=\frac{12+6+15+9+28+12}{6} \\ \mu=\frac{82}{6}=13.67 \end{gathered}[/tex]

Replacing and calculate the standard deviation:

[tex]\begin{gathered} \sigma=\sqrt[]{\frac{(12_{}-13.67)^2_{}+(6_{}-13.67)^2_{}+(15_{}-13.67)^2_{}+(9_{}-13.67)^2_{}+(28-13.67)^2_{}+(12_{}-13.67)^2_{}}{6}} \\ \sigma=\sqrt[]{\frac{293.33}{6}} \\ \sigma=6.99\cong7 \end{gathered}[/tex]

why does a cubic graph have both an x intercept and a y intercept

Answers

Answer:

All cubic function has domain (-∞,∞) and range (-∞,∞)

Step-by-step explanation:

Solve and graph on a number line. 2(x-1) 4 or 2 (x-1)>4

Answers

The given inequality is:

2 (x - 1

A half-marathon has 53 runners. A first-, second-, and third-place trophy will be awarded. Howmany different ways can the trophies be awarded?

Answers

Let's use the combination formula:

[tex]\begin{gathered} C(n,k)=nCk=\frac{n!}{k!(n-k)!} \\ n=53 \\ k=3 \\ C(53,3)=53C3=\frac{53!}{3!(50)!}=23426 \end{gathered}[/tex]

Use the Binomial Theorem to expand the expression.(x +6)^3

Answers

ok

[tex]\begin{gathered} (x+6)^3=^{}x^3+3(x)^2(6)+3(x)(6)^2+6^3 \\ \text{ = x}^3+18x^2\text{ + 3(36)x + 216} \\ \text{ = x}^3+18x^2\text{ + 108x + 216} \end{gathered}[/tex][tex]\begin{gathered} (a+b)^3\text{ } \\ first\text{ term = a} \\ \text{second term = b} \\ \text{theorem } \\ (a+b)^3=a^3+3a^2b+3ab^2+b^3 \end{gathered}[/tex]

that is the rule

just identify a and b in your problem

a = x

b = 6

Substitute in the theorem, and simplify

Consider the function f(x)= square root 5x-10 for the domain [2, +infinity). find f^-1(x), where f^-1 is the inverse of f. also state the domain of f^-1 in interval notation.edit: PLEASE DOUBLE CHECK ANSWERS.

Answers

[tex]f^{\{-1\}}(x)\text{ = }\frac{x^2+10}{5}\text{for domain (-}\infty,\text{ }\infty)[/tex]Explanation:[tex]\begin{gathered} f(x)\text{ = }\sqrt[]{5x\text{ - 10}} \\ \text{Domain = \lbrack{}2, }\infty) \end{gathered}[/tex]

let f(x) = y

To find the inverse of f(x), we would interchange x and y:

[tex]\begin{gathered} y\text{ = }\sqrt[]{5x\text{ - 10}} \\ \text{Interchanging:} \\ x\text{ = }\sqrt[]{5y\text{ - 10}} \end{gathered}[/tex]

Then we would make the subject of formula:

[tex]\begin{gathered} \text{square both sides:} \\ x^2\text{ = (}\sqrt[]{5y-10)^2} \\ x^2\text{ = 5y - 10} \end{gathered}[/tex][tex]\begin{gathered} \text{Add 5 to both sides:} \\ x^2+10\text{ = 5y} \\ y\text{ = }\frac{x^2+10}{5} \\ \text{The result above is }f^{\mleft\{-1\mright\}}\mleft(x\mright) \end{gathered}[/tex][tex]\begin{gathered} f^{\mleft\{-1\mright\}}\mleft(x\mright)\text{ = }\frac{x^2+10}{5} \\ The\text{ domain of the inverse is all real numbers} \\ \text{That is from negative infinity to positive infinity} \end{gathered}[/tex]

In interval notation:

[tex]\begin{gathered} \text{Domain = (-}\infty,\text{ }\infty) \\ f^{\{-1\}}(x)\text{ = }\frac{x^2+10}{5}\text{for domain (-}\infty,\text{ }\infty) \end{gathered}[/tex]

The profit of a cell-phone manufacturer is found by the function y= -2x2 + 108x + 75 , where x is the cost of the cell phone. At what price should the manufacturer sell the phone tomaximize its profits? What will the maximum profit be?

Answers

Hello!

First, let's rewrite the function:

[tex]y=-2x^2+108x+75[/tex]

Now, let's find each coefficient of it:

• a = -2

,

• b = 108

,

• c = 75

As we have a < 0, the concavity of the parabola will face downwards.

So, it will have a maximum point.

To find this maximum point, we must obtain the coordinates of the vertex, using the formulas below:

[tex]\begin{gathered} X_V=-\frac{b}{2\cdot a} \\ \\ Y_V=-\frac{\Delta}{4\cdot a} \end{gathered}[/tex]First, let's calculate the coordinate X by replacing the values of the coefficients:[tex]\begin{gathered} X_V=-\frac{b}{2\cdot a} \\ \\ X_V=-\frac{108}{2\cdot(-2)}=-\frac{108}{-4}=\frac{108}{4}=\frac{54}{2}=27 \end{gathered}[/tex]

So, the coordinate x = 27.

Now, let's find the y coordinate:[tex]\begin{gathered} Y_V=-\frac{\Delta}{4\cdot a} \\ \\ Y_V=-\frac{b^2-4\cdot a\cdot c}{4\cdot a} \\ \\ Y_V=-\frac{108^2-4\cdot(-2)\cdot75}{4\cdot(-2)} \\ \\ Y_V=-\frac{11664+600}{-8}=\frac{12264}{8}=1533 \end{gathered}[/tex]

The coordinate y = 1533.

Answer:

The maximum profit will be 1533 (value of y) when x = 27.

can I please getsome help with this question here, I can't really figure out how to find side PQ

Answers

SOLUTION

The following diagram will help us solve the problem

(a) From the diagram, the height of the parallelogram is given as TR, and it is 40 mm

Now we can use the area which is given to us as 3,600 square-mm to find the base of the parallelogram, which is PQ

So,

[tex]\begin{gathered} \text{Area }of\text{ a parallelogram = base}\times height \\ So\text{ } \\ 3600=PQ\times TR \\ 3600=PQ\times40 \\ 3600=40PQ \\ \text{dividing by 40, we have } \\ \frac{3600}{40}=\frac{40PQ}{40} \\ PQ=90 \end{gathered}[/tex]

Hence PQ is 90 mm

(b) Now, note that the side

[tex]PS=QR[/tex]

So, we will find QR

Also, since we have PQ, we can find TQ, that is

[tex]\begin{gathered} PQ=PT+TQ \\ 90=60+TQ \\ TQ=90-60 \\ TQ=30mm \end{gathered}[/tex]

Note that triangle QRT is a right-angle triangle, and QR is the hypotenuse or the longest side

From pythagoras

[tex]\text{hypotenuse}^2=opposite^2+adjacent^2[/tex]

So,

[tex]\begin{gathered} QR^2=TR^2+TQ^2 \\ QR^2=40^2+30^2 \\ QR^2=1600+900 \\ QR^2=2,500 \\ QR=\sqrt[]{2,500} \\ QR=50mm \end{gathered}[/tex]

Now, since

[tex]\begin{gathered} PS=QR \\ \text{then } \\ PS=50mm \end{gathered}[/tex]

Hence PS is 50 mm

Which representation does not show y as a function of x?1.II.€9> 10III.x 1 3 5 7y -6 -18 -30 -42IV. {(-2,3), (-1,4), (0,4), (3, 2)}a) I and IIb) I, II, and IIIc) I and IVd) All of the above are functions

Answers

We can say that I is not a function because inputs can only have one output.

II it's not a function since if you draw an horizontal line through the function intersect in two points, then it's not a function.

The answer is A.

Help me with my schoolwork what is the slope of line /

Answers

The two points given on the line are

[tex]\begin{gathered} (x_1,y_1)\Rightarrow(-2,9) \\ (x_2,y_2)\Rightarrow(6,1) \end{gathered}[/tex]

The slope of line that passes through (x1,y1) and (x2,y2) is gotten using the formula below

[tex]\begin{gathered} m=\frac{\text{change in y}}{\text{change in x}} \\ m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{1-9}{6-(-2)} \\ m=-\frac{8}{6+2} \\ m=-\frac{8}{8} \\ m=-1 \end{gathered}[/tex]

Therefore,

The slope of the line = -1

match the system of equations with the solution set.hint: solve algebraically using substitution method.A. no solutionB. infinite solutionsC. (-8/3, 5)D. (2, 1)

Answers

We will solve all the systems by substitution method .

System 1.

By substituting the second equation into the first one, we get

[tex]x-3(\frac{1}{3}x-2)=6[/tex]

which gives

[tex]\begin{gathered} x-x+6=6 \\ 6=6 \end{gathered}[/tex]

this means that the given equations are the same. Then, the answer is B: infinite solutions.

System 2.

By substituting the first equation into the second one, we have

[tex]6x+3(-2x+3)=-5[/tex]

which gives

[tex]\begin{gathered} 6x-6x+9=-5 \\ 9=-5 \end{gathered}[/tex]

but this result is an absurd. This means that the equations represent parallel lines. Then, the answer is option A: no solution.

System 3.

By substituting the first equation into the second one, we obtain

[tex]-\frac{3}{2}x+1=-\frac{3}{4}x+3[/tex]

by moving -3/4x to the left hand side and +1 to the right hand side, we get

[tex]-\frac{3}{2}x+\frac{3}{4}x=3-1[/tex]

By combining similar terms, we have

[tex]-\frac{3}{4}x=2[/tex]

this leads to

[tex]x=-\frac{4\times2}{3}[/tex]

then, x is given by

[tex]x=-\frac{8}{3}[/tex]

Now, we can substitute this result into the first equation and get

[tex]y=-\frac{3}{2}(-\frac{8}{3})+1[/tex]

which leads to

[tex]\begin{gathered} y=4+1 \\ y=5 \end{gathered}[/tex]

then, the answer is option C: (-8/3, 5)

System 4.

By substituting the second equation into the first one, we get

[tex]-5x+(2x-3)=-9[/tex]

By combing similar terms, we have

[tex]\begin{gathered} -3x-3=-9 \\ -3x=-9+3 \\ -3x=-6 \\ x=\frac{-6}{-3} \\ x=2 \end{gathered}[/tex]

By substituting this result into the second equation, we have

[tex]\begin{gathered} y=2(2)-3 \\ y=4-3 \\ y=1 \end{gathered}[/tex]

then, the answer is option D

Other Questions
Solve pls. I neeeeeeeeed your help. Use the triangle to answer the question.Find the sine of angle Y. Find the length of arc CD. Use 3.14for tt. Round to the nearest tenth.h 7.9 cm66.40D[? ]cm What ability of Dickinson's does Lewis find encouraging? First drop down menu A. 2 B. 4 C. 8 Second drop down main choices A.30 B. 120 C. 60 The following sentences includes (1) stated main idea and (2) supportingdetails. Select the sentence that represents the stated main idea:a. Mark takes notes during class.b. Mark studies every night.c. Mark asks questions to clarify points.d. Mark demonstrates successful student strategies.O Mark takes notes during class.O Mark studies every night.Mark asks questions to clarify points.Mark demonstrates successful student strategies. while exploring a volcano zane heard somerumbling, so he decided to climb up out of there as quicklyas he could zane's elevation relative to the edge of the inside of the volcano (in meter) as a function time (in seconds) is graphed. PLEASE HELP ME WITH THIS How long did it take Zane to reach the edge of the volcano? what is the x intercepts or zeros for y = x^2 - 6x + 5 Kacie is constructing the inscribed circle for MNP. She constructed the angle bisectors of angle M and angle N and labeled the intersection of the bisectors as point A.Which construction is a correct next step for Kacie?Open the compass to the width of AM and draw a circle centered at point A.Open the compass to the width of , A M , and draw a circle centered at point , A, .Construct the perpendicular bisector of AM .Construct the perpendicular bisector of , A M , .Open the compass to the width of AP and draw a circle centered at point A.Open the compass to the width of , A P , and draw a circle centered at point , A, .Construct the line that passes through point A and is perpendicular to NP . Given m ||n, find the value of x and y. a person who specializes in geography research and study suppose that the time required to complete a 1040r tax form is normally distributed with a mean of 100 minutes and a standard deviation of 15 minutes. what proportion of 1040r tax forms will be completed in less than 77 minutes? round your answer to at least four decimal places. Solve for X round to nearest tenth Michael and his sister Mel share the job of mowing the grass in their yard. Michael mows of the yard, and Mel mows the rest. Mel can mow of the entire yard in an hour.How long will it take Mel to finish mowing the yard?? Also after Michael mows 1/3 of the yard what fraction of the yard does mel need to mow? which pair of equations is a set of parallel lines ? a. y = x + 2 and y = 2 b. x = 2 and y = 4 An electric oven has a resistance of 50.0 and a voltage of 220 V. How much current does it draw? Find the volume of the top of the prism, volume of the bottom prism, and total volume of figure. Multiplying Polynomials 5y[tex] ({5y}^{2} + y + 3)(x - 2)[/tex] Sort these events from the story of Dolley Madison in their proper order.The British landed near Washington.A messenger announced the arrival of the British in Washington.President Madison left Washington to try to stop the British.The trunks were loaded on the carriage.Dolley Madison got the painting of George Washington.Dolley Madison packed her trunks with documents.The carriage left the White House as the British Army arrived. this tank has been set up with cold water on one side and warm water on the other. when the divider is removed and the two water samples are allowed to mix, what is most likely to happen?