1. Identify the surface with equation 43? - 9y + x2 + 36 = 0. (4 pts.) 2. Evaluate lim sint j 3 + 3e"). (4 pts.) 10 37 + 2 3. Find a vector function that represents the curve of intersection of the paraboloid = = x +y? and the cylinder x + y = 4. (4 pts.)

Answers

Answer 1

The surface with equation 43? - 9y + x^2 + 36 = 0 is an elliptic paraboloid.

The limit of sin(t)/(3+3e^t) as t approaches infinity is zero.

To find the vector function that represents the curve of intersection of the paraboloid z = x^2 + y^2 and the cylinder x + y = 4, we can use the following steps:

Solve for one variable in terms of the other: y = 4 - x.

Substitute this expression for y into the equation for the paraboloid: z = x^2 + (4 - x)^2.

Simplify this equation: z = 2x^2 - 8x + 16.

Find the partial derivatives of this equation with respect to x: dx/dt = (1, 0, dz/dx) = (1, 0, 4x - 8).

Normalize this vector by dividing it by its magnitude: T(x) = (1/sqrt(16x^2 - 32x + 64)) * (1, 0, 4x - 8).

This is the vector function that represents the curve of intersection of the paraboloid z = x^2 + y^2 and the cylinder x + y = 4.

Learn more about elliptic paraboloid:

https://brainly.com/question/30882626

#SPJ11


Related Questions

1.1-5.consider the trial on which a 3 is first observed in successive rolls of a six-sided die. let a be the event that 3 is observed on the first trial. let b be the event that at least two trials are required to observe a 3. assuming that each side has probability 1/6, find (a) p(a), (b) p(b), and (c) p(a ub).

Answers

The probability of observing a 3 on the first trial is 1/6, the probability of requiring at least two trials is 5/6, and the probability of either observing a 3 on the first trial or requiring at least two trials is 1.

(a) To find the probability of event A, which is observing a 3 on the first trial, we can calculate:

P(A) = 1/6

Since there is only one favorable outcome (rolling a 3) out of six possible outcomes.

(b) To find the probability of event B, which is requiring at least two trials to observe a 3, we can calculate:

P(B) = 5/6

This is the complement of event A since if we don't observe a 3 on the first trial, we need to continue rolling the die.

(c) To find the probability of the union of events A and B, denoted as A ∪ B, we can calculate:

P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

P(A) = 1/6 (from part a)

P(B) = 5/6 (from part b)

P(A ∩ B) = 0 (since event A and event B are mutually exclusive)

Therefore, P(A ∪ B) = P(A) + P(B) - P(A ∩ B) = 1/6 + 5/6 - 0 = 6/6 = 1

To know more about probability,

https://brainly.com/question/30500496

#SPJ11

Find the absoluto extremat they exist, as wel es el values ot x where they cour, for the kinetion to 5-* on the domain-5.01 Select the correct choice below and, it necessary, fill in the answer boxes to comparto your choice OA The absolute maximum which occur (Round the absolute nacimum to two decimal places as needed. Type an exact newer for the we of where the main cours. Use comparte e needed) CB. There is no absolute maximum Select the comect choice below and, if necessary, tu in the answer boxes to complete your choice OA The absolute munmum is which occurs at (Round the absolute minimum to two decimal places as needed. Type netwer for the value of where the cours. Use a commented OB. There is no absolute minimum

Answers

The absolute maximum is 295, which occurs at x=−4. Therefore the correct answer is option A.

To find the absolute extreme values of the function  f(x)=2x⁴−36x²−3 on the domain [−4,4], we need to evaluate the function at the critical points and endpoints within the given interval.

Critical Points:

To find the critical points, we need to find the values of xx where the derivative of f(x) is equal to zero or undefined.

First, let's find the derivative of f(x):

f′(x)=8x³−72x

Setting f′(x)equal to zero and solving for x:

8x³−72x=0

8x(x²−9)=0

8x(x+3)(x−3)=0

The critical points are x=−3, x=0, and x=3.

Endpoints:

We also need to evaluate f(x) at the endpoints of the given interval, [−4,4]:

For x=−4, f(−4)=2(−4)⁴−36(−4)²−3=295

For x=4x=4, f(4)=2(4)⁴−36(4)²−3=−295

Now, let's compare the values of f(x)at the critical points and endpoints:

f(−3)=2(−3)⁴−36(−3)²−3=−90

f(0)=2(0)⁴−36(0)²−3=−3

f(3)=2(3)⁴−36(3)²−3=−90

Therefore, the absolute maximum value is 295, which occurs at x=−4.

The absolute minimum value is -90, which occurs at x=−3 and x=3.

Therefore, the correct answer is option A: The absolute maximum is 295, which occurs at x=−4.

The question should be:

Find the absolute extreme if they exist, as well as all values of x where they occur, for the function f(x) = 2x⁴-36x²-3 on the domain [-4,4].

Select the correct choice below and, it necessary, fill in the answer boxes to complete your choice

A. The absolute maximum is ------ which occur at x= -----

(Round the absolute maximum of  two decimal places as needed. Type an exact answer for the value of x where the maximum occurs. Use a comma to separate as needed.)

B. There is no absolute maximum

To learn more about domain: https://brainly.com/question/26098895

#SPJ11

in exercises 39–66, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it diverges. an = 10 + (–1/9)^n

Answers

The given sequence is defined as a_n = 10 + (-1/9)^n. By applying the limit laws and theorems, we can determine the limit of the sequence or show that it diverges.

The sequence a_n = 10 + (-1/9)^n does not converge to a specific limit. The term [tex](-1/9)^n[/tex] oscillates between positive and negative values as n approaches infinity.

As n increases, the exponent n alternates between even and odd values, causing the term (-1/9)^n to alternate between positive and negative. Consequently, the sequence does not approach a single value, indicating that it diverges.

To further understand this, let's analyze the terms of the sequence. When n is even, the term (-1/9)^n becomes positive, and as n increases, its value approaches zero.

Conversely, when n is odd, the term (-1/9)^n becomes negative, and as n increases, its absolute value also approaches zero. Therefore, the sequence oscillates indefinitely between values close to 10 and values close to 9.

Since there is no ultimate value approached by the sequence, we can conclude that it diverges.

To learn more about limit of the sequence visit:

brainly.com/question/31402433

#SPJ11

You are the seller of chocolate ice-cream, the two closest ice-cream competitors to you are hazelnut ice-cream and peanuts ice-cream respectively. Some of the consumers have the same net surplus from consuming peanuts ice-cream and chocolate ice-cream. Your closest substitute is chocolate cake. Use the Salop's model and graphically illustrate the impacts of the following events to your
market share :
i
If the price of chocolate cake decreases
If the price of peanuts ice-cream increases

Answers

i. Increase in demand for chocolate ice-cream. ii. Increase in market share of chocolate ice cream.

Salop's Model: The Salop's model is a model of consumer choice based on differentiated products with horizontal and vertical differentiation.

It can be used to study the impact of changes in prices, transportation costs, advertising, and other factors on a firm's market share and profit.Graphical illustration:

Below is the graphical representation of Salop's model :

Here, we have to analyze the impact of the following events on the market share of chocolate ice-cream in terms of Salop's model:i) If the price of chocolate cake decreasesAs the price of chocolate cake decreases, the demand for chocolate cake will increase. As a result, the consumers who had the same net surplus from consuming chocolate ice-cream and peanuts ice-cream will now have a higher net surplus from consuming chocolate ice-cream compared to peanuts ice-cream. This will lead to an increase in the demand for chocolate ice-cream.

Therefore, the market share of chocolate ice-cream will increase. The impact can be represented graphically as shown below:ii) If the price of peanuts ice-cream increases.

As the price of peanuts ice-cream increases, the demand for peanuts ice-cream will decrease. As a result, some consumers who had the same net surplus from consuming peanuts ice-cream and chocolate ice-cream will now have a higher net surplus from consuming chocolate ice-cream compared to peanuts ice-cream. This will lead to an increase in the demand for chocolate ice-cream. Therefore, the market share of chocolate ice-cream will increase. The impact can be represented graphically as shown below:Therefore, the increase in the price of peanuts ice-cream and decrease in the price of chocolate cake will lead to an increase in the market share of chocolate ice-cream.

Learn more about market share here:

https://brainly.com/question/31233079


#SPJ11

Compute the volume of the solid formed by revolving the region bounded by y = 20 - x, y = 0 and x = 0 about the x-axis. V- 26

Answers

The volume of the solid formed by revolving the region bounded by y = 20 - x, y = 0, and x = 0 about the x-axis is (8000/3)π cubic units.

To compute the volume of the solid formed by revolving the region bounded by the curves y = 20 - x, y = 0, and x = 0 about the x-axis, we can use the method of cylindrical shells.

The region bounded by the curves forms a triangular shape, with the base of the triangle on the x-axis and the vertex at the point (20, 0).

To find the volume, we integrate the area of each cylindrical shell from x = 0 to x = 20. The radius of each cylindrical shell is given by the distance between the x-axis and the curve y = 20 - x, which is (20 - x).

The height of each cylindrical shell is the infinitesimal change in x, denoted as dx.

Therefore, the volume can be calculated as follows:

V = ∫[from 0 to 20] 2πrh dx

= ∫[from 0 to 20] 2π(20 - x)x dx

Let's evaluate this integral:

V = 2π ∫[from 0 to 20] (20x - x^2) dx

= 2π [10x^2 - (x^3/3)] | [from 0 to 20]

= 2π [(10(20)^2 - (20^3/3)) - (10(0)^2 - (0^3/3))]

= 2π [(10(400) - (8000/3)) - 0]

= 2π [(4000 - 8000/3)]

= 2π [(12000/3) - (8000/3)]

= 2π (4000/3)

= (8000/3)π

To learn more about volume: https://brainly.com/question/14197390

#SPJ11

When interspecific interactions lead to competitive exclusion, the weaker competitor is forced to retreat to a more restricted niche (its realized niche) than it would inhabit in the absence of the competition its fundamental and realized niches for chthamalus, Note that one target should be left blank.
Previous question

Answers

This restricted portion of the fundamental niche that Chthamalus can effectively utilize in the presence of competition is referred to as its realized niche.

The weaker competitor is forced to retreat to a more restricted niche (its realized niche) than it would inhabit in the absence of the competition when interspecific interactions result in competitive exclusion.

For Chthamalus, a typical intertidal barnacle animal categories, its key specialty alludes to the full scope of ecological circumstances and assets it is hypothetically fit for taking advantage of without rivalry. Chthamalus would occupy its entire fundamental niche in the absence of competition.

However, Chthamalus is outcompeted and forced to withdraw from a portion of its fundamental niche when competing with a stronger competitor, such as Balanus, the dominant barnacle species. This limited part of the essential specialty that Chthamalus can actually use within the sight of contest is alluded to as its acknowledged specialty.

To know more about hypothetically refer to

https://brainly.com/question/30723569

#SPJ11

6. Calculate the area of the triangle formed by the vectors a = (3, 2, -2) and b = (2,-1, 2). Round your a answer to 1 decimal place.

Answers

To calculate the area of the triangle formed by the vectors a = (3, 2, -2) and b = (2, -1, 2), we can use the cross product of these vectors.

The cross product of two vectors in three-dimensional space gives a new vector that is orthogonal to both of the original vectors. The magnitude of this cross product vector represents the area of the parallelogram formed by the two original vectors, and since we want the area of the triangle, we can divide it by 2.

First, we calculate the cross product of vectors a and b:

a x b = [(2 * -2) - (-1 * 2), (3 * 2) - (2 * -2), (3 * -1) - (2 * 2)]

= [-2 + 2, 6 + 4, -3 - 4]

= [0, 10, -7]

The magnitude of the cross product vector is given by:

|a x b| = sqrt(0² + 10² + (-7)²)

[tex]= \sqrt{(0 + 100 + 49)}\\ \\= \sqrt{(149)[/tex]

Finally, the area of the triangle formed by the vectors a and b is

[tex]|a * b| / 2 = \sqrt{149} / 2 = 6.1[/tex] : (rounded to 1 decimal place).

Therefore, the area of the triangle is approximately 6.1 square units.

To learn more about area of the triangle visit:

brainly.com/question/32294813

#SPJ11

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.
g(x)=int_1^x 7/(t^3+3)dt

Answers

The derivative of the function g(x) is given by g'(x) = 7/(x³+3).

Using Part 1 of the Fundamental Theorem of Calculus, the derivative of the function g(x) = ∫₁ˣ 7/(t³+3) dt can be found by evaluating the integrand at the upper limit of integration, which in this case is x.

According to Part 1 of the Fundamental Theorem of Calculus, if a function g(x) is defined as the integral of a function f(t) with respect to t from a constant lower limit a to a variable upper limit x, then the derivative of g(x) with respect to x is equal to f(x).

In this case, we have g(x) = ∫₁ˣ 7/(t³+3) dt, where the integrand is 7/(t³+3).

To find the derivative of g(x), we evaluate the integrand at the upper limit of integration, which is x. Therefore, we substitute x into the integrand 7/(t³+3), and the derivative of g(x) is equal to 7/(x³+3).

Hence, the derivative of the function g(x) is given by g'(x) = 7/(x³+3). This derivative represents the rate of change of the function g(x) with respect to x at any given point.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

(a) Find an equation of the plane containing the points (1,0,-1), (2, -1,0) and (1,2,3). (b) Find parametric equations for the line through (5,8,0) and parallel to the line through (4,1, -3) and (2"

Answers

a) The equation of the plane containing the points (1, 0, -1), (2, -1, 0), and (1, 2, 3) is x - 2y + z = 3.

b) Parametric equations for the line through (5, 8, 0) and parallel to the line through (4, 1, -3) and (2, 0, 2) are x = 5 + 2t, y = 8 + t, and z = -3t.

a) To find the equation of the plane containing the points (1, 0, -1), (2, -1, 0), and (1, 2, 3), we first need to find two vectors that lie on the plane. We can take the vectors from one point to the other two points, such as vector v = (2-1, -1-0, 0-(-1)) = (1, -1, 1) and vector w = (1-1, 2-0, 3-(-1)) = (0, 2, 4). The equation of the plane can then be written as a linear combination of these vectors: r = (1, 0, -1) + s(1, -1, 1) + t(0, 2, 4). Simplifying this equation gives x - 2y + z = 3, which is the equation of the plane containing the given points.

b) To find parametric equations for the line through (5, 8, 0) and parallel to the line through (4, 1, -3) and (2, 0, 2), we can take the direction vector of the parallel line, which is v = (2-4, 0-1, 2-(-3)) = (-2, -1, 5). Starting from the point (5, 8, 0), we can write the parametric equations as follows: x = 5 - 2t, y = 8 - t, and z = 0 + 5t. These equations represent a line that passes through (5, 8, 0) and has the same direction as the line passing through (4, 1, -3) and (2, 0, 2).

Learn more about vectors here:

https://brainly.com/question/24256726

#SPJ11

Correct question:

(a) Find an equation of the plane containing the points (1,0,-1), (2, -1,0) and (1,2,3). (b) Find parametric equations for the line through (5,8,0) and parallel to the line through (4,1, -3) and (2,0,2).

00 Using the Alternating Series Test on the series 2 (-1)" In n we see that bn Inn n and n n=1 (1) bn is choose for all n > 3 (2) bn is choose on n > 3 (3) lim bn = choose n00 Hence, the series is choose

Answers

The series  ∑[n=1 to ∞] 2 (-1)ⁿ / ln(n) is convergent.

To apply the Alternating Series Test to the series ∑[n=1 to ∞] 2 (-1)ⁿ / ln(n), we need to check two conditions:

The terms bn = 1 / ln(n) are positive and decreasing for n > 3.

The limit of bn as n approaches infinity is 0.

The terms bn = 1 / ln(n) are positive because ln(n) is always positive for n > 1. Additionally, for n > 3, ln(n) is a strictly increasing function, so 1 / ln(n) is decreasing.

Taking the limit as n approaches infinity:

lim (n → ∞) 1 / ln(n) = 0.

Since both conditions of the Alternating Series Test are satisfied, the series ∑[n=1 to ∞] 2 (-1)ⁿ / ln(n) is convergent.

Therefore, the series is convergent according to the Alternating Series Test.

To know more about  Alternating Series Test click on below link:

https://brainly.com/question/30400869#

#SPJ11

Sketch and label triangle RST where R = 68.4°, s = 5.5 m, t = 8.1 m. a. Find the area of the triangle, rounded to the nearest hundredth.

Answers

The area of the triangle  RST where R = 68.4°, s = 5.5 m, t = 8.1 m is 19.25 square meters.

To sketch and label triangle RST with R = 68.4°, s = 5.5 m, and t = 8.1 m, we can follow these steps:

Draw a line segment RS with a length of 5.5 units (representing 5.5 m).

At point R, draw a ray extending at an angle of 68.4° to form an angle RST.

Measure 8.1 units (representing 8.1 m) along the ray to mark point T.

Connect points S and T to complete the triangle.

Now, to find the area of the triangle, we can use the formula for the area of a triangle: Area = (1/2) * base * height

In this case, the base of the triangle is s = 5.5 m, and we need to find the height. To find the height, we can use the sine of angle R:

sin R = height / t

Rearranging the formula, we have: height = t * sin R

Plugging in the values, we get: height = 8.1 * sin(68.4°)

Calculating the height, we find: height ≈ 7.27 m

Finally, substituting the values into the area formula:

Area = (1/2) * 5.5 * 7.27 = 19.25 sq.m

LEARN MORE ABOUT area here:  brainly.com/question/1631786

#SPJ11

Consider the function f (x) = 3x2 - 4x + 6. = What is the right rectangular approximation of the area under the curye of f on the interval [0, 2] with four equal subintervals? Note: Round to the neare

Answers

Rounding the final result to the nearest decimal point, the approximate area under the curve of f(x) on the interval [0, 2] using the right rectangular approximation with four equal subintervals is approximately 12.3.

To approximate the area under the curve of the function f(x) = 3x² - 4x + 6 on the interval [0, 2] using a right rectangular approximation with four equal subintervals, we can follow these steps:

1. Divide the interval [0, 2] into four equal subintervals. The width of each subinterval will be (2 - 0) / 4 = 0.5.

2. Calculate the right endpoint of each subinterval. Since we're using a right rectangular approximation, the right endpoint of each subinterval will serve as the x-coordinate for the rectangle's base. The four right endpoints are: 0.5, 1, 1.5, and 2.

3. Evaluate the function f(x) at each right endpoint to obtain the corresponding heights of the rectangles. Plug in the values of x into the function f(x) to find the heights: f(0.5), f(1), f(1.5), and f(2).

4. Calculate the area of each rectangle by multiplying the width of the subinterval (0.5) by its corresponding height obtained in step 3.

5. Add up the areas of all four rectangles to obtain the approximate area under the curve.

Approximate Area = Area of Rectangle 1 + Area of Rectangle 2 + Area of Rectangle 3 + Area of Rectangle 4

Note: Since you requested rounding to the nearest, please round the final result to the nearest decimal point based on your desired level of precision.

To calculate the right rectangular approximation of the area under the curve of the function f(x) = 3x² - 4x + 6 on the interval [0, 2] with four equal subintervals, let's proceed as described earlier:

1. Divide the interval [0, 2] into four equal subintervals: [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2].

2. Calculate the right endpoints of each subinterval: 0.5, 1, 1.5, 2.

3. Evaluate the function f(x) at each right endpoint:

f(0.5) = 3(0.5)² - 4(0.5) + 6 = 2.75

f(1) = 3(1)² - 4(1) + 6 = 5

f(1.5) = 3(1.5)² - 4(1.5) + 6 = 6.75

f(2) = 3(2)² - 4(2) + 6 = 10

4. Calculate the area of each rectangle:

Area of Rectangle 1 = 0.5 * 2.75 = 1.375

Area of Rectangle 2 = 0.5 * 5 = 2.5

Area of Rectangle 3 = 0.5 * 6.75 = 3.375

Area of Rectangle 4 = 0.5 * 10 = 5

5. Add up the areas of all four rectangles:

Approximate Area = 1.375 + 2.5 + 3.375 + 5 = 12.25

Know more about subintervals here

https://brainly.com/question/10207724#

#SPJ11

The bakery "Sweet squirrels" is preparing boxes of candied almonds to sell for the holiday season. The manager finds that, every day, the number of boxes produced depends on the number of employees working in the bakery according to the function () f(x) = (2522 – 2º), for 0 505 15, , < < where x is the number of employees working at "Sweet squirrels". (a) What does f'(x) represent? (b) Find the number of employees such that the daily production of boxes per employee is maximum. Justify your answer. (c) Would hiring more employees than what you found in part (b) increase or decrease the production? Explain.

Answers

a. The f'(x) represents the derivative of the function f(x)

b. The number of employees at which the daily production of boxes per employee is maximum is 1261.

c. Hiring more employees than 1261 would increase production because it would result in a positive slope and an increase in the daily production of boxes per employee.

(a) f'(x) represents the derivative of the function f(x), which is the rate of change of the number of boxes produced with respect to the number of employees. In other words, it represents the slope of the production function.

(b) To find the number of employees such that the daily production of boxes per employee is maximum, we need to find the critical points of the function f(x). We can do this by finding where f'(x) = 0.

Taking the derivative of f(x), we have:

f'(x) = -2x + 2522

Setting f'(x) = 0 and solving for x:

-2x + 2522 = 0

-2x = -2522

x = 1261

So, the number of employees at which the daily production of boxes per employee is maximum is 1261.

(c) To determine if hiring more employees than the number found in part (b) would increase or decrease production, we can examine the behavior of the derivative f'(x) in the vicinity of x = 1261.

Since f'(x) = -2x + 2522, we can see that when x < 1261, the slope is negative, indicating that the production per employee is decreasing. When x > 1261, the slope is positive, indicating that the production per employee is increasing.

Therefore, hiring more employees than 1261 would increase production because it would result in a positive slope and an increase in the daily production of boxes per employee.

For more about production function:

brainly.com/question/29306140

#SPJ11

Given quadrilateral ABCD is a rhombus, find x and m

Answers

The value of x is 5

The measure of m<ADB is 28 degrees

How to determine the value

From the information given, we have that the figure is a rhombus

Note that the interior angles of a rhombus are equivalent to 90 degrees

Then, we can that;

<ABD and <DBC are complementary angles

Also, we can see that the diagonal divide the angles into equal parts.

equate the angles, we have;

6x - 2 = 4x + 8

collect the like terms

6x - 4x = 10

2x = 10

Divide the values by the coefficient, we have;

x = 5

Now, substitute the value, we have;

m< ADB = 4x + 8 = 4(5) + 8 = 20 + 88 = 28 degrees

Learn more about rhombus at: https://brainly.com/question/26154016

#SPJ1

Using production and geological data, the management of an oil company estimates that of will be purced from a producing fold at a rate given by the following 80 R() 1*8** Ost 15 Act) is the rate of production (in thousands of barres per your) t years after pumping begins. Find the area between the graph of and the face over the interval (7,421 and interpret the results The area is approximately square unita (Round to the nearest integer as needed)

Answers

Using production and geological data, the management of an oil company estimates that of will be purced from a producing fold at a rate given by the following 80 R() 1*8** Ost 15 Act) is the rate of production (in thousands of barres per your) t years after pumping begins. the approximate area of 189 square units represents an estimate of the total oil production in thousands of barrels over the given time interval.

To find the area between the graph of R(t) = 1 - 8^(-0.15t) and the x-axis over the interval (7, 421), we need to compute the definite integral of R(t) with respect to t over that interval.

The integral can be expressed as follows:

∫[7 to 421] R(t) dt = ∫[7 to 421] (1 - 8^(-0.15t)) dt.

To solve this integral, we can use integration techniques such as substitution or integration by parts. However, given the complexity of the integrand, it is more appropriate to use numerical methods or calculators to approximate the value.

Using numerical methods, the calculated area is approximately 189 square units.

Interpreting the results, the area between the graph of R(t) and the x-axis over the interval (7, 421) represents the cumulative production of the oil field during that time period. Since the integrand represents the rate of production in thousands of barrels per year, the area under the curve gives an estimate of the total number of barrels produced during the time span from 7 years to 421 years.

Therefore, the approximate area of 189 square units represents an estimate of the total oil production in thousands of barrels over the given time interval.

Learn more about  definite integral here:

https://brainly.com/question/30772555

#SPJ11

Suppose that an 1 and br = 2 and a = 1 and bi - - 4, find the sum of the series: 12=1 n=1 A. (5an +86m) 11 n=1 B. Σ (5a, + 86.) - ( n=2

Answers

Answer:

The sum of the series Σ (5an + 86m) from n = 1 to 12 is 7086.

Step-by-step explanation:

To find the sum of the series, we need to calculate the sum of each term in the series and add them up.

The series is given as Σ (5an + 86m) from n = 1 to 12.

Let's substitute the given values of a, b, and r into the series:

Σ (5an + 86m) = 5(a(1) + a(2) + ... + a(12)) + 86(1 + 2 + ... + 12)

Since a = 1 and b = -4, we have:

Σ (5an + 86m) = 5((1)(1) + (1)(2) + ... + (1)(12)) + 86(1 + 2 + ... + 12)

Simplifying further:

Σ (5an + 86m) = 5(1 + 2 + ... + 12) + 86(1 + 2 + ... + 12)

Now, we can use the formula for the sum of an arithmetic series to simplify the expression:

The sum of an arithmetic series Sn = (n/2)(a1 + an), where n is the number of terms and a1 is the first term.

Using this formula, the sum of the series becomes:

Σ (5an + 86m) = 5(12/2)(1 + 12) + 86(12/2)(1 + 12)

Σ (5an + 86m) = 5(6)(13) + 86(6)(13)

Σ (5an + 86m) = 390 + 6696

Σ (5an + 86m) = 7086

Therefore, the sum of the series Σ (5an + 86m) from n = 1 to 12 is 7086.

Learn more about series:https://brainly.com/question/24643676

#SPJ11


If you add the digits in a two-digit number and multiply the sum by 7, you get the original number. If you reverse the digits in the two-digit number, the new number is 18 more than the sum of its two digits. What is the original number?
A.42
B.24
C.64
D.46
E.36

Answers

Let's assume the original two-digit number is represented by "10x + y," where x represents the tens digit and y represents the units digit.

According to the given information:
1) The sum of the digits multiplied by 7 is equal to the original number:
7(x + y) = 10x + y

2) Reversing the digits gives a new number that is 18 more than the sum of the digits:
10y + x = x + y + 18

We can solve this system of equations to find the values of x and y, which will give us the original two-digit number.

From the first equation:
7x + 7y = 10x + y
6x - 6y = 0
x = y

Substituting x = y into the second equation:
10y + y = y + y + 18
11y = 2y + 18
9y = 18
y = 2

Substituting y = 2 back into the first equation:
7x + 7(2) = 10x + 2
14 = 3x
x = 4

Therefore, the original two-digit number is 10x + y = 42.

So, the correct answer is A. 42.








= The arc length of the curve defined by the equations (t) = 12 cos(11t) and y(t) = 8th for 1

Answers

The arc length of the curve defined by the equations x(t) = 12 cos(11t) and y(t) = 8t for 1 ≤ t ≤ 3 is = ∫ √(17424 sin^2(11t) + 64) dt

L = ∫ √(dx/dt)^2 + (dy/dt)^2 dt

First, we need to find the derivatives of x(t) and y(t) with respect to t:

dx/dt = -132 sin(11t)

dy/dt = 8

Now, we substitute these derivatives into the arc length formula:

L = ∫ √((-132 sin(11t))^2 + 8^2) dt

  = ∫ √(17424 sin^2(11t) + 64) dt

To calculate the integral, we can use numerical methods or special techniques for evaluating integrals involving trigonometric functions. Once the integral is evaluated, we obtain the arc length L of the curve between t = 1 and t = 3.

Note: Since the integral involves trigonometric functions, the exact value of the arc length may be challenging to determine, and numerical approximation methods may be necessary to obtain an accurate result.

To learn more about integral click here

brainly.com/question/31059545

#SPJ11

The midpoint of the line segment from P4 to P2 is (-3,4). If P, = (-5,6), what is P2?

Answers

The midpoint of a line segment is average of coordinates of its endpoints. Midpoint of line segment from P4 to P2 is (-3,4) and P1 = (-5,6).Therefore, the coordinates of P2 are (-1,2).

To find the coordinates of P2, we can use the midpoint formula, which states that the midpoint (M) of a line segment with endpoints (x1, y1) and (x2, y2) is given by the coordinates (Mx, My), where:

Mx = (x1 + x2) / 2

My = (y1 + y2) / 2

In this case, we are given that the midpoint is (-3,4) and one of the endpoints is P1 = (-5,6). Let's substitute these values into the midpoint formula:

Mx = (-5 + x2) / 2 = -3

My = (6 + y2) / 2 = 4

Solving these equations, we can find the coordinates of P2:

-5 + x2 = -6

x2 = -6 + 5

x2 = -1

6 + y2 = 8

y2 = 8 - 6

y2 = 2

Therefore, the coordinates of P2 are (-1,2).

To learn more about midpoint of line segment click here : brainly.com/question/28986603

#SPJ11

use (1) in section 8.4 x = eatc (1) to find the general solution of the given system. x' = 1 0 0 3 x

Answers

The general solution of the given system can be found by using the equation (1) from section 8.4, which states x = e^(At)c, where A is the coefficient matrix and c is a constant vector. In this case, the coefficient matrix A is given by A = [1 0; 0 3] and the vector x' represents the derivative of x.

By substituting the values into the equation x = e^(At)c, we can find the general solution of the system.

The matrix exponential e^(At) can be calculated by using the formula e^(At) = I + At + (At)^2/2! + (At)^3/3! + ..., where I is the identity matrix.

For the given matrix A = [1 0; 0 3], we can calculate (At)^2 as follows:

(At)^2 = A^2 * t^2 = [1 0; 0 3]^2 * t^2 = [1 0; 0 9] * t^2 = [t^2 0; 0 9t^2]

Substituting the matrix exponential and the constant vector c into the equation x = e^(At)c, we have:

x = e^(At)c = (I + At + (At)^2/2! + ...)c

  = (I + [1 0; 0 3]t + [t^2 0; 0 9t^2]/2! + ...)c

Simplifying further, we can multiply the matrices and apply the scalar multiplication to obtain the general solution in terms of t and the constant vector c.

Please note that without specific values for the constant vector c, the general solution cannot be fully determined. However, by following the steps outlined above and performing the necessary calculations, you can obtain the general solution of the given system.

Learn more about coefficient matrix

https://brainly.com/question/32226716

#SPJ11

Evaluate each integral using the recommended substitution. X 1. √√√²-1 dx, let x = sec 0 5 1 0 (x²+25) x² TAR V x² 2. 3. dx, let x = 5 tan dx, let x = 2 sin 0

Answers

Integral ∫(x/√(x² - 1)) dx using the substitution x = sec(θ) is ln|x| + (1/4)(x² - 1)² + C, Integral  ∫(1/(x² + 25)²) dx using the substitution x = 5tan(θ) is tan⁻¹(x/5) + C and Integral ∫(x²/√(4 - x²)) dx using the substitution x = 2sin(θ) is 2sin⁻¹(x/2) - sin(2sin⁻¹(x/2)) + C.

1. Evaluating ∫(x/√(x² - 1)) dx using the substitution x = sec(θ):

Let x = sec(θ), then dx = sec(θ)tan(θ) dθ.

Substituting x and dx, the integral becomes:

∫(sec(θ)/√(sec²(θ) - 1)) sec(θ)tan(θ) dθ

Simplifying, we get:

∫(sec²(θ)/tan(θ)) dθ

Using the trigonometric identity sec²(θ) = 1 + tan²(θ), we have:

∫((1 + tan²(θ))/tan(θ)) dθ

Expanding the integrand:

∫(tan(θ) + tan³(θ)) dθ

Integrating term by term, we get:

ln|sec(θ)| + (1/4)tan⁴(θ) + C

Substituting back x = sec(θ), we have:

ln|sec(sec⁻¹(x))| + (1/4)tan⁴(sec⁻¹(x)) + C

ln|x| + (1/4)(x² - 1)² + C

2. Evaluating ∫(1/(x² + 25)²) dx using the substitution x = 5tan(θ):

Let x = 5tan(θ), then dx = 5sec²(θ) dθ.

Substituting x and dx, the integral becomes:

∫(1/((5tan(θ))² + 25)²) (5sec²(θ)) dθ

Simplifying, we get:

∫(1/(25tan²(θ) + 25)²) (5sec²(θ)) dθ

Simplifying further:

∫(1/(25sec²(θ))) (5sec²(θ)) dθ

∫ dθ

Integrating, we get:

θ + C

Substituting back x = 5tan(θ), we have:

tan⁻¹(x/5) + C

3. Evaluating ∫(x²/√(4 - x²)) dx using the substitution x = 2sin(θ):

Let x = 2sin(θ), then dx = 2cos(θ) dθ.

Substituting x and dx, the integral becomes:

∫((2sin(θ))²/√(4 - (2sin(θ))²)) (2cos(θ)) dθ

Simplifying, we get:

∫(4sin²(θ)/√(4 - 4sin²(θ))) (2cos(θ)) dθ

Simplifying further:

∫(4sin²(θ)/√(4cos²(θ))) (2cos(θ)) dθ

∫(4sin²(θ)/2cos(θ)) (2cos(θ)) dθ

∫(4sin²(θ)) dθ

Using the double-angle identity, sin²(θ) = (1 - cos(2θ))/2, we have:

∫(4(1 - cos(2θ))/2) dθ

Simplifying, we get:

∫(2 - 2cos(2θ)) dθ

Integrating term by term, we get:

2θ - sin(2θ) + C

Substituting back x = 2sin(θ), we have:

2sin⁻¹(x/2) - sin(2sin⁻¹(x/2)) + C

To know more about Integral refer here:

https://brainly.com/question/31433890#

#SPJ11

Complete Question:

Evaluate each integral using the recommended substitution.

[tex]\displaystyle \int {\frac{x}{\sqrt{x^2 - 1}} dx[/tex] let x = secθ

[tex]\displaystyle \int \limits^5_0 {\frac{1}{(x^2 +25)^2}} dx[/tex] let x = 5tanθ

[tex]\displaystyle \int {\frac{x^2}{\sqrt{4-x^2}} dx[/tex] let x = 2sinθ

Choose ratio that has a negative value. a. sin 146° b. tan 76° C. cos 101° d. cos 20° 4. C

Answers

Among the given options, the ratio that has a negative value is c. cos 101°.

In trigonometry, the sine (sin), tangent (tan), and cosine (cos) functions represent the ratios between the sides of a right triangle. These ratios can be positive or negative, depending on the quadrant in which the angle lies.

In the first quadrant (0° to 90°), all trigonometric ratios are positive. In the second quadrant (90° to 180°), only the sine ratio is positive. In the third quadrant (180° to 270°), only the tangent ratio is positive. In the fourth quadrant (270° to 360°), only the cosine ratio is positive.

Since the given options include angles greater than 90°, we need to determine the ratios that correspond to angles in the third and fourth quadrants. The angle 101° lies in the second quadrant, where only the sine ratio is positive. Therefore, the correct answer is c. cos 101°, which has a negative value.

Learn more about ratio here : brainly.com/question/31945112

#SPJ11

Convert the following polar equation to a cartesian equation. r = 2 O A. y2 = 4 OB. x = 2 O C. y = 2 OD. x2 + y2 = 4

Answers

To convert the polar equation r = 2 into a Cartesian equation, we can use the following conversions:
x = r * cos(theta) y = r * sin(theta)

correct conversion is option D: x^2 + y^2 = 4.

Let's substitute these equations into each option:
A. y^2 = 4

Substituting y = r * sin(theta), we have:
(r * sin(theta))^2 = 4 r^2 * sin^2(theta) = 4
B. x = 2

Substituting x = r * cos(theta), we have:
r * cos(theta) = 2
C. y = 2

Substituting y = r * sin(theta), we have:
r * sin(theta) = 2
D. x^2 + y^2 = 4

Substituting x = r * cos(theta) and y = r * sin(theta), we have:

(r * cos(theta))^2 + (r * sin(theta))^2 = 4 r^2 * cos^2(theta) + r^2 * sin^2(theta) = 4

Since r^2 * cos^2(theta) + r^2 * sin^2(theta) simplifies to r^2 (cos^2(theta) + sin^2(theta)), option D can be rewritten as:

r^2 = 4

Therefore, the correct conversion of the polar equation r = 2 to a Cartesian equation is option D: x^2 + y^2 = 4.

Learn more about Cartesian equation here : brainly.com/question/27927590

#SPJ11

Question dy Given y = f(u) and u = g(x), find dy dy du = by using Leibniz's notation for the chain rule: da = dx du dx Y = 1 - 204 U = -3.x2 Provide your answer below: MO dx I

Answers

dy/dx = 1224x. The chain rule is a fundamental rule in calculus used to find the derivative of composite functions.

To find dy/dx using Leibniz's notation for the chain rule, we can use the following formula:

dy/dx = (dy/du) * (du/dx)

Given that y = f(u) and u = g(x), we need to find dy/du and du/dx, and then multiply them together to find dy/dx.

From the given information, we have:

y = 1 - 204u

u = -3x^2

Find dy/du:

To find dy/du, we differentiate y with respect to u while treating u as the independent variable:

dy/du = d/dy (1 - 204u) = -204

Find du/dx:

To find du/dx, we differentiate u with respect to x while treating x as the independent variable:

du/dx = d/dx (-3x^2) = -6x

Now, we can substitute these values into the chain rule formula:

dy/dx = (dy/du) * (du/dx) = (-204) * (-6x) = 1224x

Learn more about chain rule here:

https://brainly.com/question/32519888

#SPJ11


sketch the area represented

find g'(x) with theirem of valculus and the fundamental theorem
followed by differentiation
Find 9'(x) in two of the following ways. (a) by using part one of the fundamental theorem of calculus g'(x) = (b) by evaluating the integral using part two of the fundamental theorem of calculus and t

Answers

Let's start with finding the area represented using the method of calculus. To sketch the area, we will need to be given a function to work with.

Once we have the function, we can identify the limits of integration and integrate the function over that interval to find the area.

Moving on to finding g'(x), we can use the fundamental theorem of calculus. Part one of this theorem tells us that if we have a function g(x) defined as the integral of another function f(x), then g'(x) = f(x). This means that we just need to identify f(x) and we can use it to find g'(x).

Similarly, for finding 9'(x), we can use the fundamental theorem of calculus. Part two of this theorem tells us that if we have a function g(x) defined as the integral of another function f(x) over an interval from a to x, then g'(x) = f(x). This means that we just need to identify f(x) and the interval [a, x] and use them to find g(x). Once we've found g(x), we can differentiate it to find 9'(x).

Learn more about integration  here:

https://brainly.com/question/31744185

#SPJ11

Simplify for s (s2 + 1) (-2) – (-2s) 2 (s2 + 1) /(25) (s2 +1)*

Answers

The simplified form of the expression  (s^2 + 1)(-2) - (-2s)^2 / (25)(s^2 + 1) is 2(s + 1)(s - 1) / 25(s^2 + 1).

we can perform the operations step by step.

First, let's simplify (-2s)^2 to 4s^2.

The expression becomes: (s^2 + 1)(-2) - 4s^2 / (25)(s^2 + 1)

Next, we can distribute (-2) to (s^2 + 1) and simplify the numerator:

-2s^2 - 2 + 4s^2 / (25)(s^2 + 1)

Combining like terms in the numerator, we have: (2s^2 - 2) / (25)(s^2 + 1)

Now, we can cancel out the common factor of (s^2 + 1) in the numerator and denominator: 2(s^2 - 1) / 25(s^2 + 1)

Finally, we can simplify further by factoring (s^2 - 1) as (s + 1)(s - 1):

2(s + 1)(s - 1) / 25(s^2 + 1)

So, the simplified form of the expression is 2(s + 1)(s - 1) / 25(s^2 + 1).

LEARN MORE ABOUT expression here: brainly.com/question/28170201

#SPJ11

1.1) Find the least integer n such that f (x) is O(xn) for each
of these functions.
a. f(x) = 2x3 + x 2log x b. f(x) = 3x3 + (log x)4
b. f(x) = 3x3 + (log x)4
c. f(x) = (x4 + x2 + 1)/(x3 + 1) d. f(x)

Answers

To find the least integer n such that f(x) is O(x^n) for each given function, we need to determine the dominant term in each function and its corresponding exponent.

a. For f(x) = 2x^3 + x^2log(x), the dominant term is 2x^3, which has an exponent of 3. Therefore, the least integer n for this function is 3.

b. For f(x) = 3x^3 + (log(x))^4, the dominant term is 3x^3, which has an exponent of 3. Therefore, the least integer n for this function is also 3.

c. For f(x) = (x^4 + x^2 + 1)/(x^3 + 1), when x approaches infinity, the term x^4/x^3 dominates, as the other terms become negligible. The dominant term is x^4/x^3 = x, which has an exponent of 1. Therefore, the least integer n for this function is 1.

d. The function f(x) is not provided, so it is not possible to determine the least integer n in this case. for functions a and b, the least integer n is 3, and for function c, the least integer n is 1. The least integer n for function d cannot be determined without the function itself.

Learn more about integer here:

https://brainly.com/question/15276410

#SPJ11

23) ƒ cot5 4x dx = a) cotx + C 24 1 - 12 cos³ 4x b) O c) O d) O - + cosec³ 4x + 1 + 12 sin³ x log cos 4x + log | sin 4x| + 1 + 1 4 sin² log | sin x + C cosec² 4x + C + C 4 cos² 4x X

Answers

The integral ∫cot^5(4x) dx can be evaluated as (cot(x) + C)/(24(1 - 12cos^3(4x))), where C is the constant of integration.

To evaluate the given integral, we can use the following steps:

First, let's rewrite the integral as ∫cot^4(4x) * cot(4x) dx. We can then use the substitution u = 4x, du = 4 dx, which gives us ∫cot^4(u) * cot(u) du/4.

Next, we can rewrite cot^4(u) as (cos^4(u))/(sin^4(u)). Substituting this expression and cot(u) = cos(u)/sin(u) into the integral, we have ∫(cos^4(u))/(sin^4(u)) * (cos(u)/sin(u)) du/4.

Now, let's simplify the integrand. We can rewrite cos^4(u) as (1/8)(3 + 4cos(2u) + cos(4u)) using the multiple angle formula.

The integral then becomes ∫((1/8)(3 + 4cos(2u) + cos(4u)))/(sin^5(u)) du/4.

We can further simplify the integrand by expanding sin^5(u) using the binomial expansion. After expanding and rearranging the terms, the integral becomes ∫(3/sin^5(u) + 4cos(2u)/sin^5(u) + cos(4u)/sin^5(u)) du/32.

Now, we can evaluate each term separately. The integral of (3/sin^5(u)) du can be evaluated as (cot(u) - (1/3)cot^3(u)) + C1, where C1 is the constant of integration.

The integral of (4cos(2u)/sin^5(u)) du can be evaluated as -(2cosec^2(u) + cot^2(u)) + C2, where C2 is the constant of integration.

Finally, the integral of (cos(4u)/sin^5(u)) du can be evaluated as -(1/4)cosec^4(u) + C3, where C3 is the constant of integration.

Bringing all these results together, we have ∫cot^5(4x) dx = (cot(x) - (1/3)cot^3(x))/(24(1 - 12cos^3(4x))) + C, where C is the constant of integration.

Learn more about integration :

https://brainly.com/question/28400852

#SPJ11

Suppose that f(t) = Qoat = Qo(1+r) with f(2)= 74.6 and f(9) = 177.2. Find the following: (a) a = (b) r = (Give both answers to at least 5 decimal places.)

Answers

To find the values of 'a' and 'r' in the equation f(t) = Qo * a^t, we can use the given information:

Given: f(2) = 74.6 and f(9) = 177.2

Step 1: Substitute the values of t and f(t) into the equation:

f(2) = Qo * a^2

74.6 = Qo * a^2

f(9) = Qo * a^9

177.2 = Qo * a^9

Step 2: Divide the second equation by the first equation to eliminate Qo:

(177.2)/(74.6) = (Qo * a^9)/(Qo * a^2)

2.3765 = a^(9-2)

2.3765 = a^7

Step 3: Take the seventh root of both sides to solve for 'a':

a = (2.3765)^(1/7)

a ≈ 1.20338 (rounded to 5 decimal places)

Step 4: Substitute the value of 'a' into one of the original equations to find Qo:

74.6 = Qo * (1.20338)^2

74.6 = Qo * 1.44979

Qo ≈ 51.4684 (rounded to 5 decimal places)

Step 5: Calculate 'r' using the value of 'a':

r = a - 1

r ≈ 0.20338 (rounded to 5 decimal

Learn more about equation here;

https://brainly.com/question/29657983

#SPJ11

Find the limit it it exists. lim (5x +11) X-8 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O Alim (5x+11)- (Simplify your answer.)

Answers

The option (c) [tex]lim (5x+11)= 5[/tex] 1 is the correct choice for the given limit.

A limit is a fundamental idea in mathematics that is used to describe how a function or sequence behaves as it approaches a particular value. It depicts the value that a function, sequence, or tendency approaches or tends to when input or an index moves closer to a given point.

Limits are frequently shown by the symbol "lim" and are accompanied by the variable getting closer to the value. The limit could be undefined, infinite, or finite. They are essential for comprehending how functions and sequences behave near particular points or at infinity and are used to analyse continuity, differentiability, and convergence in calculus. Many crucial ideas in mathematical analysis have their roots in limits.

Given,[tex]lim (5x +11) x[/tex] → 8To find the limit of the above expression as x approaches 8The limit of the given function is calculated by substituting the value of x in the function.

Substituting the value of x = 8 in the given function we get:[tex]lim[/tex] (5x +11) x → 8=[tex]lim (5 × 8 + 11) x[/tex] → [tex]8= lim (40 + 11) x → 8= lim 51 x → 8[/tex]

Therefore, the limit of the given function is 51 as x approaches 8.

Thus, the option (c) [tex]lim (5x+11)[/tex]= 51 is the correct choice.


Learn more about limit here:

https://brainly.com/question/7446469


#SPJ11

Other Questions
Given t - 4 f(x) 1 -dt 1 + cos (t) At what value of x does the local max of f(x) occur? x = (a) Find and identify the traces of the quadric surface x2 + y2 ? z2 = 25given the plane.x = kFind the trace.Identify the trace.y=kFind the trace.Identify the trace.z=kFind the traceIdentify the trace. compounds a and b are volatile liquids with pure vapor pressures of 266 torr and 444 torr respectively, at 25 oc. equal moles of a and b are mixed at 25 oc to form a solution which has a vapor pressure or 325 torr. which of the following statements is consistent with these observations A product is introduced to the market. The weekly profit (in dollars) of that product decays exponentially -0.04.x as function of the price that is charged (in dollars) and is given by P(x) = 75000 Arrange the alcohols in order of decreasing surface tension.CH3CH2OHCH3OHCH3CH2CH2CH2OHCH3CH2CH2OH Find the Tangent, Normal and Binormal vectors (T, N and B) for the curve r(t) = (5 cos(4t), 5 sin(4t), 2t) at the point t = 0 T(0) = (0, 5 1 26 27 26 N(0) = (-1,0,0) B(O) = 10, B0-27 1 2v 26 V 26 a spring has a length of 0.250 m when a 0.31-kg mass hangs from it, and a length of 0.920 m when a 2.3-kg mass hangs from it. what is the force constant of the spring? n/m what is the unloaded length of the spring? cm Consider the curves y = 3x2 +6x and y = -42 +4. a) Determine their points of intersection (1.01) and (22,92)ordering them such that 1 A blogging Website allows users to post messages and to comment on other messages that have been posted. When a user posts a message, the message itself is considered data. In addition to the data, the site stores the following metadata.The time the message was postedThe name of the user who posted the messageThe names of any users who comment on the message and the times the comments were madeWhich of the following questions could NOT be answered using only the data and metadata collected? Suppose that the manufacturing cost of a particular item is approximated by M(x, y) = 2x2 2xy3 +35, where x is the cost of materials and y is the cost of labor. Find the y following: Mz(x, y) = = My(x, y) = = Mxx(x, y) = Mry(x, y) = = Find an equation of the plane The plane that passes through the point (-3, 3, 2) and contains the line of intersection of the planes x+y-22 and 3x + y + 5z = 5 describes the potential impacts of interest rate risk, economic risk, credit risk, and operational risk on the company featured in the case study in the reaction h3po4(aq) 3nh3(aq)3nh 4(aq) po34(aq), the product nh 4(aq) is the __________. Does the sequence {a,} converge or diverge? Find the limit if the sequence is convergent. 2 + 4n4 an 4 n + 3n Select the correct choice below and, if necessary, fill in the answer box to complete the Which organizational structure actually consists of several organizations? A. Divisionalized structure. B. Functional structure. C. Network structure The Java AVL tree Node class's getBalance() and updateHeight() methods assume that ____. a) each child is null b) each child is not null c) the parent's height attribute is correct d) each child's height attribute is correct what would jonathan use in the following scenario? jonathan is programming a web-based application. he has been building the product but needs it to display in the web browser. Exercise5 : Find the general solution of the ODE 4y'' 20y' + 25y = (1 + x + x2) cos (3x). Exercise6 : Find the general solution of the ODE dy + 49 y = 2x sin (7x). dr2 keira, an infant, lets out a couple of long cries. her father observes that she is not holding her breath for a long time between her cries. keira is most likely letting out: when caregivers and infants interact with each other, their bodily movements and facial expressions generally occur in tempo with each other. this general feature of intimate interaction is referred to as 1 bonding, 2 bimodal transpersonal duality, 3 bidirectionality, 4 synchrony? Steam Workshop Downloader